Abstract

We consider algebraic and topological K-theory of complex locally convex algebras stabilized by harmonic operator ideals. A symmetrically normed Banach ideal $J \subset B(H)$ is harmonic if it contains a compact operator whose sequence of singular values is the harmonic sequence $\{1/n\}_n$; for example, the Schatten ideals \mathcal{L}_p with $p > 1$ are harmonic. We prove that if A is a locally convex algebra and J a harmonic ideal then there is a long exact sequence

$$K_{n+1}^{top}(A \otimes J) \to HC^Q_{n-1}(A \otimes J) \to K_n(A \otimes J) \to K_n^{top}(A \otimes J)$$

Here \otimes is the completed (projective) tensor product, HC^Q is the algebraic cyclic homology of Q-algebras, K_* is algebraic K-theory and $K_*^{top}(A) = kk_*(C, A)$ is the covariant version of Cuntz’ bivariant kk for locally convex algebras.