MARKET INTEGRATION IN WHOLESALE MAIZE MARKETS IN PAKISTAN
Tahir MUKHTAR
Muhammad Tariq JAVED

Abstract: This study tests long-run spatial market integration between price pairs of maize in four regional markets of Pakistan using cointegration and Error-Correction Model (ECM) approach. Hypotheses tests of market integration and causality are conducted using monthly wholesale maize prices in logarithmic form over the period from January 1995 to December 2005. The results show that the regional markets of maize have strong price linkages and thus are spatially integrated. Lahore market dominates with price formation in the other three regional markets.

JEL Classification: C22, Q13
Keywords: Market Integration, Maize, Cointegration, Granger Causality

1. Introduction

An indirect means of analyzing market efficiency is to test for market integration. Three types of market integration are identified in the literature, inter-temporal, vertical and spatial. Inter-temporal market integration relates to the arbitrage process across periods. Vertical market integration is concerned with stages in marketing and processing channels. Spatial integration is concerned with the integration of spatially distinct markets i.e. if price changes in one market are fully reflected in alternative market then these markets are said to be spatially integrated. The concept of market integration has normally been applied in studies involving spatial market inter-relatedness.

* The authors are respectively Assistant Professor at the Department of Economics, Fatima Jinnah Women University, Rawalpindi and Associate Professor at the Department of Economics, Quaid-i-Azam University, Islamabad.
Market integration is a central issue in many contemporary debates concerning the issues of market Liberalization. Market integration is perceived as a precondition for effective market reform in developing countries. The high degree of market integration means the markets are quite competitive and provide little justification for extensive and costly government intervention designed to improve competitiveness to enhance market efficiency. Markets that are not integrated may convey inaccurate picture about price information that might distort production decisions and contribute to inefficiencies in markets, harm the ultimate consumer and lead to low production and sluggish growth, specifically in rural economy that is the lynchpin of the most of the developing countries including Pakistan.

After wheat and rice, maize is the third most important cereal crop in Pakistan. Maize occupies around 5 percent of the total cropped area and 8 percent of the total area under food crops. Its production grew at an annual rate of nearly 5 percent from 1990-91 to 2005-06. Maize is grown in all over Pakistan but Punjab and North West Frontier Province (NWFP) dominate in its Production. During 2000-01 to 2005-06, average annual maize production in Pakistan was 2141.43 thousands tons with 54 percent and 45 percent share from Punjab and NWFP respectively (Pakistan, 2005-06). In the past, maize was a subsistence crop and the farmers held most of the produce for their regular diet, seed, livestock, etc. With increasing real national income, urbanization, shift in consumption patterns in favor of wheat, rice, meat, diary, fruits and vegetables, and introduction of new maize products, maize producers created a surplus for the industry. Presently, 30 to 35% of the national production of maize is market surplus to be used in the industry. More than half of industry’s share is used in the wet- milling industry to produce starch, sweeteners, corn oil, glucose, custard powder and gluten. The other almost half share of the industry is consumed by the poultry industry for manufacturing feed. As only a little maize is consumed as food in Punjab, therefore, there is a huge market surplus in this province. Most of this market surplus is traded with other provinces. Whereas, in NWFP much of maize is used for home consumption at the farm and very little is available for sale in the market.
Market integration of agricultural products has retained importance in developing countries due to its potential application to policy making. Based on the information of the extent of market integration, government can formulate policies for providing infrastructure and information regulatory services to avoid market exploitation. We find a substantial body of research literature on the issue of agricultural markets integration in the developing countries (see for example, Goletti and Babu, (1994), Dercon (1995), Baulch, B. (1997), Gonzalez and Helfand (2001), Dawson and Dey (2002), Jha et al., (2005) and Bakhshoodeh and Sahraeiyan (2006)).

However, in Pakistan, the research literature on agricultural market integration is acutely scarce. The only study that we have come across is Lohano and Mari (2006). This study analyzes spatial market integration using monthly wholesale real price of onion in four regional markets located in each of the four provinces of Pakistan. The results obtained from the error-correction model show that the regional markets of onion have strong price linkages and thus are spatially integrated. The significance of the present study is to test the market integration of domestic maize markets since it is the third most important cereal crop in Pakistan.

Therefore, the objective of this paper is to analyze spatial market integration among four main regional markets of Pakistan using monthly wholesale prices of maize. Following Ravallion (1986), we assume a radial market structure where there is a group of local, regional markets and a central market in Lahore, that is not only the capital city of Punjab province but also is a major center for business and trade. The regional markets chosen are those in Hyderabad, Peshawar, and Quetta. These regional markets are located in Sindh, NWFP and Balochistan provinces respectively. Trade among regional markets may exist but trade with the central market dominates price formation and accordingly we assume three pairwise price relationships i.e. between the price in Lahore and prices in the regional markets.

The rest of the paper is organized as follows. Section 2 provides analytical framework. Data description and empirical findings are given in section 3. The final section concludes the study.
2. Analytical framework

For price integration, simple bivariate correlation coefficients measure price movements of a commodity in different markets. This is the simplest way to measure the spatial price relationships between two markets. Early inquiries on spatial market integration, for example Lele (1967) and Jones (1968) have used this method. However, this method clearly has some limitations, as it cannot measure the direction of price integration between two markets. The cointegration procedure measures the degree of price integration and takes into account the direction of price integration. This econometric technique provides more information than the correlation procedure, as it allows for the identification of both the integration process and its direction between two markets.

2.1. Market Integration Test

Market integration is tested using the cointegration method, which requires that

- Two variables, say P_{it} and P_{jt} are non-stationary in levels but stationary in first differences i.e. $P_{it} \sim I(1)$ and $P_{jt} \sim I(1)$.
- There exists a linear combination between these two series, which is stationary i.e. $v_{it} (= P_{it} - \alpha - \beta P_{jt}) \sim I(0)$.

So the first step is to test whether each of the univariate series is stationary. If they are both $I(1)$ then we may go to the second step to test cointegration. The Engle and Granger (1987) procedure is the common way to test cointegration.

Augmented Dickey Fuller (ADF) test (Dickey and Fuller, 1981) is usually applied to test stationarity. It tests the null hypothesis that a series (P_t) is non-stationary by calculating a t-statistics for $\beta = 0$ in the following equation:

$$\Delta P_t = \alpha + \beta P_{t-1} + \gamma_t + \sum_{k=2}^{n} \delta_k \Delta P_{t-k} + \varepsilon_t. \quad (1)$$

Where $\Delta P_t = P_t - P_{t-1}$, $\Delta P_{t-k} = P_{t-k} - P_{t-k-1}$ and $k = 2, 3, \ldots, n$ and where P_t, P_{t-1}, P_{t-k} and P_{t-k-1} are the prices at time t, $t-1$, etc.
Mukhtar, T., Javed, M.T. *Market Integration in Maize Markets in Pakistan*

\[t - k \text{ and } t - k - 1 \text{ respectively. While } \alpha, \beta, \gamma \text{ and } \delta \text{ are the parameters to be estimated and } \varepsilon \text{ is white noise error term.} \]

If the value of the ADF statistic is less than the critical value at the conventional significance level (usually the five per cent significant level) then the series \(P_t \) is said to stationary and vice versa. If \(P_t \) is found to be non-stationary then it should be determined whether \(P_t \) is stationary at first differences i.e. \(\Delta P_t (= P_t - P_{t-1}) \sim I(0) \) by repeating the above procedure. If the first difference of the series \(\Delta P_t \) is stationary then the series \(P_t \) may be concluded as integrated of order one that is \(P_t \sim I(1) \). Now we can move to the second step to check cointegration.

In order to test cointegration, we will apply two-step residual based test of Engle and Granger (1987). In the first step we apply OLS to the following regression equation in which all variables are found to be integrated of same order (e.g. \(I(1) \)).

\[
P_{it} = \rho_1 + \rho_2 P_{jt} + \nu_{it}.
\]

Where \(P_{it} \) is the price in market \(i \) at time \(t \), \(P_{jt} \) is the price in market \(j \) at time \(t \), \(\rho_1 \) and \(\rho_2 \) are parameters to be estimated and \(\nu_{it} \) are the white noise error terms.

The second step involves testing whether the residual terms \(\nu_{it} \) from the cointegrating regressions are non-stationary using a modified ADF test i.e.

\[
\Delta \nu_t = \vartheta \nu_{t-1} + \sum_{k=2}^{n} \theta_k \Delta \nu_{t-k} + \mu_t.
\]

Where \(\nu_t, \nu_{t-1}, \nu_{t-k} \text{ and } \nu_{t-k-1} \) are, respectively, residuals at time \(t, t-1 \), \(t-k \) and \(t-k-1 \). And where \(\vartheta \text{ and } \theta \) are parameters to be estimated while \(\mu_t \) is the residual term.

The null hypothesis of \(\vartheta = 0 \) is tested to check the stationarity of the residual. If the value of \(t\)-statistic of the \(\vartheta \) coefficient is less than the critical value then the null hypothesis of
non-stationarity is rejected and the residual is found to be stationary at levels. This, in turn, leads to the conclusion that long-run cointegration holds between two time-series.

2.2. Error Correction Model (ECM)

If price series are \(I(1) \), then one could run regressions in their first differences. However, by taking first differences, we lose the long-run relationship that is stored in the data. This implies that one needs to use variables in levels as well. Advantage of the error correction model (ECM) is that it incorporates variables both in their levels and first differences. By doing this, ECM captures the short-run disequilibrium situations as well as the long-run equilibrium adjustments between prices. Even if one demonstrates market integration through cointegration, there could be disequilibrium in the short-run i.e. price adjustment across markets may not happen instantaneously. It may take some time for the spatial price adjustments. ECM can incorporate such short-run and long-run changes in the price movements.

An ECM formulation, which describes both the short-run and long-run behaviors of prices, can be formulated as:

\[
\Delta P_{it} = \gamma_1 + \gamma_2 \Delta P_{jt} - \pi \hat{\nu}_{it-1} + \nu_{it}. \tag{4}
\]

In this model, \(\gamma_2 \) is the impact multiplier (the short-run effect) that measures the immediate impact that a change in \(P_{jt} \) will have on a change in \(P_{it} \). On the other hand, \(\pi \) is the feedback effect or the adjustment effect that shows how much of the disequilibrium is being corrected, that is the extent to which any disequilibrium in the previous period affects any adjustment in the \(P_{it} \) period. Of course

\[
\hat{\nu}_{it-1} = P_{it-1} - \hat{\rho}_1 - \hat{\rho}_2 P_{jt-1}
\]

and therefore from this equation we also have \(\rho_2 \) being the long-run response.

2.3. Granger Causality Test

If a pair of series is cointegrated then there must be Granger-causality in at least one direction, which reflects the direction of
influence between series (in our case prices). Theoretically, if the current or lagged terms of a time-series variable, say \(P_{jt} \), determine another time-series variable, say \(P_{it} \), then there exists a Granger-causality relationship between \(P_{jt} \) and \(P_{it} \), in which \(P_{it} \) is Granger caused by \(P_{jt} \). Bessler and Brandt (1982) firstly introduced this test into research on market integration to determine the leading market. From the above analysis, the model is specified as follows:

\[
\Delta P_{it} = \theta_{11} \Delta P_{it-1} + \ldots + \theta_{1n} \Delta P_{it-n} + \theta_{21} \Delta P_{jt-1} + \ldots + \theta_{2n} \Delta P_{jt-n} - \gamma_{1} (P_{it-1} - \alpha P_{jt-1} - \delta) + \epsilon_{it}, \tag{5}
\]

\[
\Delta P_{jt} = \theta_{31} \Delta P_{jt-1} + \ldots + \theta_{3n} \Delta P_{jt-n} + \theta_{41} \Delta P_{it-1} + \ldots + \theta_{4n} \Delta P_{it-n} - \gamma_{2} (P_{it-1} - \alpha P_{jt-1} - \delta) + \epsilon_{jt}. \tag{6}
\]

The following two assumptions are tested using the above two models to determine the Granger causality relationship between prices.

\[\theta_{21} = \cdots = \theta_{2n} = \cdots = \gamma_{1} = 0 \text{ (no causality from } P_{jt} \text{ to } P_{it})\]

\[\theta_{41} = \cdots = \theta_{4n} = \cdots = \gamma_{2} = 0 \text{ (no causality from } P_{it} \text{ to } P_{jt})\]

3. Data, estimation and interpretation of results

Our price data consist of monthly wholesale prices of maize (Rs/ton) for Lahore (LHR) and three regional markets; namely, Hyderabad (HYD), Peshawar (PESH), and Quetta (QTA) for the period January 1995 to December 2005. Crude data is taken from Government of Pakistan, *Agricultural Statistics of Pakistan*, various issues.

To start with, we investigate the stochastic properties of four price series of maize that is we determine their order of integration. For cointegration to hold all prices need to be integrated of the same order. Usually prices are found to be \(I(1) \) or their first difference is \(I(0) \). If prices are integrated of different order, no cointegration exists because at least one of the series contains explosive components. To check for the order of integration we apply Augmented Dickey-Fuller (ADF) test on three wholesale price series of maize. Table 1 reports the results.
Table 1. Augmented Dickey Fuller (ADF) Unit Root Tests

<table>
<thead>
<tr>
<th>Variables</th>
<th>Level</th>
<th>First Difference</th>
<th>1 %</th>
<th>5 %</th>
<th>10 %</th>
<th>Decision</th>
<th>Order of Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(HYD)1</td>
<td>0.587</td>
<td>-12.182</td>
<td>-2.583</td>
<td>1.94</td>
<td>1.62</td>
<td>Nonstationary at level but stationary at first difference</td>
<td>I (1)</td>
</tr>
<tr>
<td>ln(LHR)</td>
<td>0.480</td>
<td>-9.761</td>
<td>-2.583</td>
<td>1.94</td>
<td>1.62</td>
<td>Nonstationary at level but stationary at first difference</td>
<td>I (1)</td>
</tr>
<tr>
<td>ln(PESH)</td>
<td>0.609</td>
<td>-9.484</td>
<td>-2.583</td>
<td>1.94</td>
<td>1.62</td>
<td>Nonstationary at level but stationary at first difference</td>
<td>I (1)</td>
</tr>
<tr>
<td>ln(QTA)</td>
<td>1.368</td>
<td>-8.830</td>
<td>-2.583</td>
<td>1.94</td>
<td>1.62</td>
<td>Nonstationary at level but stationary at first difference</td>
<td>I (1)</td>
</tr>
</tbody>
</table>

All the series are found to be non-stationary at levels and stationary at first difference. Thus, all price series are shown to be integrated of order one i.e. $I(1)$. Now we can proceed for

1 ln (HYD) = Natural log of wholesale price of maize at Hyderabad market (Rs/ton)
ln (LHR) = Natural log of wholesale price of maize at Lahore market (Rs/ton)
ln (PESH)) = Natural log of wholesale price of maize at Peshawar market (Rs/ton)
ln (QTA)) = Natural log of wholesale price of maize at Quetta market (Rs/ton)
congregation analysis between wholesale prices of maize at Lahore and in each regional market. For this purpose we run regression equation (2) using OLS.

Table 2 provides the estimated results. If the two markets are perfectly spatially integrated, the parameter ρ_2 in equation (2) is one or close to one. In the regression of price in Hyderabad on price in Lahore the estimated value of ρ_2 is 0.83. This indicates that a change of rupee one in maize price in Lahore market brings a change of rupee 0.83 in maize price in Hyderabad. Thus high spatial market integration holds between Lahore and Hyderabad markets. While the values of ρ_2 are 0.68 in the regression for Peshawar on Lahore and 0.77 for Quetta on Lahore respectively. These regression results also show moderate to high spatial market integrations.

<table>
<thead>
<tr>
<th>Variables</th>
<th>ln(HYD)</th>
<th>ln(PESH)</th>
<th>ln(QTA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>5.626</td>
<td>2.189</td>
<td>3.598</td>
</tr>
<tr>
<td></td>
<td>(18.572)*</td>
<td>(5.650)*</td>
<td>(6.071)*</td>
</tr>
<tr>
<td>ln(LHR)</td>
<td>0.832</td>
<td>0.681</td>
<td>0.779</td>
</tr>
<tr>
<td></td>
<td>(4.760)*</td>
<td>(4.330)*</td>
<td>(11.431)*</td>
</tr>
<tr>
<td>AR(1)</td>
<td>0.908</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(17.628)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA(1)</td>
<td>0.921</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(20.618)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.911</td>
<td>0.944</td>
<td>0.929</td>
</tr>
<tr>
<td>\bar{R}^2</td>
<td>0.900</td>
<td>0.933</td>
<td>0.923</td>
</tr>
<tr>
<td>DW</td>
<td>2.046</td>
<td>1.991</td>
<td>1.999</td>
</tr>
<tr>
<td>F-Stat</td>
<td>403.677</td>
<td>714.291</td>
<td>412.434</td>
</tr>
<tr>
<td>Prob(F-Stat)</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Note: Values in parentheses show t-statistics. The statistics significant at 5% level of significance are indicated by *.

In order to verify the long-run cointegration we now check the order of integration of the residuals. If the estimated regression’s residuals are integrated of order zero i.e. $I(0)$, then there exists a long-run relationship between the wholesale price in Lahore and each regional wholesale price of maize. The results are given in table.

93
3. The linear combination of the three price series gives the residuals which are stationary at level that is they are integrated of order zero ($I(0)$). This validates our proposition that prices in Lahore market and each regional market are indeed cointegrated.

Table 3. Augmented Dickey-Fuller Tests on the Level of Residuals

<table>
<thead>
<tr>
<th>Estimated Residuals</th>
<th>Level</th>
<th>1 %</th>
<th>5 %</th>
<th>10 %</th>
<th>Decision</th>
<th>Order of Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(HYD)</td>
<td>11.59</td>
<td>-2.583</td>
<td>-1.943</td>
<td>-1.62</td>
<td>Stationary at level</td>
<td>$I(0)$</td>
</tr>
<tr>
<td>ln(PESH)</td>
<td>7.81</td>
<td>-2.583</td>
<td>-1.943</td>
<td>-1.62</td>
<td>Stationary at level</td>
<td>$I(0)$</td>
</tr>
<tr>
<td>ln(QTA)</td>
<td>-4.74</td>
<td>-2.583</td>
<td>-1.943</td>
<td>-1.62</td>
<td>Stationary at level</td>
<td>$I(0)$</td>
</tr>
</tbody>
</table>

For checking stability between Lahore maize market price and each regional maize market price we estimate error-correction model. The results are presented in table 4.

Table 4. Empirical Findings of Error-Correction Model

<table>
<thead>
<tr>
<th>Variables</th>
<th>ln(HYD)</th>
<th>ln(PESH)</th>
<th>ln(QTA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.002(0.374)</td>
<td>0.003(0.520)</td>
<td>0.006(1.069)</td>
</tr>
<tr>
<td>ln(LHR)</td>
<td>0.384(4.014)*</td>
<td>0.211(1.372)</td>
<td>0.309(3.057)*</td>
</tr>
<tr>
<td>π</td>
<td>-0.777(-5.978)*</td>
<td>-0.480(-2.170)*</td>
<td>-0.578(-3.145)*</td>
</tr>
<tr>
<td>AR(1)</td>
<td>0.327(2.958)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA(1)</td>
<td>0.659(4.082)*</td>
<td>0.240(2.683)*</td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.514</td>
<td>0.466</td>
<td>0.4161</td>
</tr>
<tr>
<td>R^2_{adj}</td>
<td>0.507</td>
<td>0.454</td>
<td>0.4069</td>
</tr>
<tr>
<td>DW</td>
<td>2.001</td>
<td>1.989</td>
<td>2.0447</td>
</tr>
<tr>
<td>F-Stat</td>
<td>43.524</td>
<td>41.847</td>
<td>45.251</td>
</tr>
<tr>
<td>Prob (F-Stat)</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Note: Values in parentheses show t-statistics. The statistics significant at 5 % level of significance are indicated by *.
The results indicate that maize price in Lahore has an effect on the prices in the three regional maize markets. In all cases the adjustment parameter (π) appears with negative value and lies between 0.47 and 1. For Hyderabad, the adjustment of prices in this market due to changes in price in Lahore is quite high. In this market, the instantaneous adjustment in the same month is about 77 percent. For Quetta and Peshawar, the adjustment of prices due to changes in price in Lahore is only partial each month. It takes almost 2 months for prices to get adjusted due to a particular change in price in Lahore. Thus, there is a stable long-run relationship between Lahore maize market price and each regional maize market price.

To examine the causal relationship between the variables we have applied the Granger-causality test using lag length up to three periods. The results are listed in table 5.

<table>
<thead>
<tr>
<th>Lagged Periods</th>
<th>Null Hypothesis</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No causality from HYD to LHR</td>
<td>Accepted</td>
</tr>
<tr>
<td></td>
<td>No causality from LHR to HYD</td>
<td>Rejected</td>
</tr>
<tr>
<td>2</td>
<td>No causality from PESH to LHR</td>
<td>Accepted</td>
</tr>
<tr>
<td></td>
<td>No causality from LHR to PESH</td>
<td>Rejected</td>
</tr>
<tr>
<td>3</td>
<td>No causality from QTA to LHR</td>
<td>Accepted</td>
</tr>
<tr>
<td></td>
<td>No causality from LHR to QTA</td>
<td>Rejected</td>
</tr>
</tbody>
</table>

The results show that the price in Lahore market Granger-causes the price in Hyderabad, Peshawar and Quetta. This unidirectional causality implies that Lahore dominates price formation with these regional markets. These results are in accordance with our expectations. Since Hyderabad and Quetta markets are in Sindh and Balochistan provinces and the production of maize is almost nil in these provinces.

Therefore, they are net importer of maize from Punjab. Lahore is the main maize market in Punjab and price change in
Lahore market affects price formation in Hyderabad and Quetta markets. Peshawar is the main market in North West Frontier Province (NWFP) of Pakistan.

Although the contribution of this province in total maize production of the country is quite significant (45%) yet maize is cultivated basically for human consumption because it is also a big maize consuming region. While leaving only a little quantity for sale in the market for industry. In such circumstances, Lahore market is a big source of maize supply for non-consumption purposes to this market. Therefore, Lahore maize price influences the price patterns in Peshawar market.

4. Conclusions

After wheat and rice, maize is the third most important cereal crop in Pakistan. Maize occupies around 5 percent of the total cropped area and 8 percent of the total area under food crops. Maize is mainly cultivated in Punjab and NWFP. As presently most of the market surplus is generated in Punjab, therefore, it is mostly traded from Punjab to the other three provinces.

Following Ravallion (1986), we assume a radial market structure where there is a group of local, regional markets and a central market in Lahore, that is not only the capital city of Punjab but also is a major center for business and trade. The regional markets chosen are those in Hyderabad, Quetta and Peshawar. These regional markets are located in maize deficit provinces, Sindh and Balochistan and big maize producing and consuming North West Frontier Province respectively. Trade between regional markets may exist but trade with the central market dominates price formation and accordingly we assume the three pair-wise price relationships i.e. between the price in Lahore and those in the regional markets.

First of all we have tested price integration to check the relationship between wholesale price of maize at Lahore and each of three regional markets. Price integration analysis shows a stable
long-run relationship between the Lahore price and each of regional prices. Thus, maize markets across Pakistan are efficient and are functioning well. Further, in its relationship with Hyderabad, Peshawar and Quetta, Lahore is dominant and leader in price formation.

References

Journal published by the EAAEDS: http://www.usc.es/economet/eaa.htm