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SIMULATION EVIDENCE ON GRANGER CAUSALITY IN 
PRESENCE OF A CONFOUNDING VARIABLE 

ASGHAR, Zahid 

_______________________________________________________ 
Abstract 
This paper provides simulation evidence on Granger causality 
between two variables when they are jointly caused by a third 
variable. Four Data Generating Processes (DGPs) are considered for 
testing causality by Granger method and two DGPs for testing 
causality by Toda and Yamamoto (1995) procedure. Our simulation 
involve three variables but causality has been tested only between 
two variable and the third variable (the real cause) has been ignored 
to show that its association which matters in these causality tests. 
Nevertheless, if we know that there are only two variables in 
economic dynamics and the true model is known then these causality 
tests work fine and for  this we have carried out bootstrap simulation. 
JEL codes: 
Key words: Granger Causality, Toda and Yamamoto Procedure, 
Monte Carlo Simulation, Causation and Association, Bootstrap 
Simulation 
_______________________________________________________ 
 
1. Introduction 
It has been established fact that there is strong correlation between 
variables (Export, Money, Energy, Investment etc) and economic 
growth. Many investigate whether this association can be translated 
into causal relationship. This has been an area of research where 
there is strong controversy. Many researchers have used Granger 
Causality to determine the direction of causation among these 
variables. Despite the fact that Granger definition which is based on 
a criterion of predictability is not in agreement with other definitions 
of causality, yet testing Granger causality in the time series 
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econometrics has been very common since Granger introduced this 
concept in 1969. According to him a variable Xt is said to cause Yt if 
the former helps to improve the forecast of the latter. 

Several tests for detecting Granger causality have later on 
been developed. These tests are; Granger causality test, MWALD 
tests by Toda and Yamamoto (1995), Error Correction Model etc. 
Granger causality is used if the underlying series data are stationary. 
Toda and Yamamoto (1995) propose a method that is used to 
estimate unrestricted VAR whose order is k+d, where k is the true 
order and d is the highest degree of integration in the system. If the 
underlying time series data are non-stationary and cointegrated then 
the method used for testing causality is Engle and Granger error 
correction mechanism.   

      Previously some simulation experiments have been 
carried out to find the performance of different causality tests. Zapata 
and Rambaldi (1997) use the Monte Carlo simulation to check the 
performance of three tests for Granger non causality. These include 
two Wald tests, using VAR at level and vector error correction model 
and a likelihood ratio test proposed by Mosconi and Giannini (1992). 
Zapata and Rambaldi use six data generation processes, which 
include four bivariate and two trivariate models. Their Monte Carlo 
evidence show that likelihood ratio test perform better than Wald 
tests. 

Toda and Phillips (1994) introduce some sequential testing 
procedure for testing Granger Causality and compare these 
procedures with level VAR and difference VAR. They assume that 
lag order is either known or overestimated by a fixed order. They 
show that these sequential procedures perform well when sample 
size is large but in small sample size neither of the tests performs 
well. 

Clarke and Mirza (2006) studied three Granger non causality 
testing strategies. In their Monte Carlo simulation, they use ten data 
generating processes of bivariate and trivariate system. Zapata and 
Rambaldi (1997) assume that lag order is either correctly specified or 
over/under specified, while Clarke and Mirza (2006) use two 
selection criteria (finite prediction error and Schwarz criteria) for 
estimating the lag length. They also use three pretesting strategies 
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(co integration testing) and examine the impact of these strategies on 
Granger non causality test and find that wrong estimation of co 
integration rank at the prior stage can result in over rejection of the 
true non causality null hypothesis. Their Monte Carlo evidence show 
that the pretesting strategy proposed by Ahn and Reinsel (1990) 
perform well and in this strategy for estimation of lag length 
Schwarz criterion perform well. 

Clark and Mirza (2006) “The simulation experiment of Toda 
and Phillips [6], though extensive are limited to trivariate VAR[1] 
DGPs with lag order either specified correctly or overestimated by a 
fixed order. Dolado and Lutkepohl [4] undertake a small Monte 
Carlo involving a bivariate VAR[2] system with iid errors; they 
assume that the VAR order is either unknown or over specified. 
Zapata and Rambaldi [7] examine GNC within bivariate and 
trivariate systems, but they limit attention to DGPs that are 
sufficiently ‘cointegrated’ in the sense of Toda and Philips[6, 9] so 
that either GNC has a standard limiting distribution; we consider 
situations in which nonstandard asymptotic distributions result.” 

All these papers have presumed that Granger Causality is a 
test of causality and have compared the efficiency of different 
methods at different sample sizes. They differ only in either lag 
selection procedure or on the size of Monte Carlo experiment.  
No one has tested Granger causality in the presence of a confounding 

variable which is often the case in economic theory that two 
variables seems cause of each other but the hidden variable is the 

true cause which derives both variables. For example Granger(1988) 
has presented a theorem that two variables X and Y are independent 

( xyr =0) if only this pair is considered but X/Z and Y/Z need not be 
independent i.e. there exist a third variable which is correlated with 

both X and Y and due to this variable X and Y becomes correlated. If 

we put xyr =0 in the partial correlation coefficient formula                                          
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 then .xy zr becomes  
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and .xy zr  becomes zero only if either xzr =0 or yzr =0. It means 
that if Z is affecting both X and Y, which are independent, then there 
could exist a relationship between X and Y due to the confounding 

variable Z unless one of xzr , yzr  is zero. 
 We have conducted Monte Carlo simulation experiments where we 
have introduced a third variable which is mainly the cause of the 
other two variables. 

First objective of this paper is to show that Granger causality 
indicates causation when actually there is simply association between 
two variables due to a third variable. Second objective is to test the 
performance of Granger Causality tests at different lag lengths, 
sample sizes etc under the presence of a confounding variable. 
Thirdly we have carried out bootstrap simulation to test the power of 
Granger causality when it is assumed that the researcher knows the 
true model. The contribution of this study is that it’s the first time 
that simulation experiment has been conducted by considering a 
confounding variable in mind. Moreover, if the two variables under 
study are known and the true model is also known (which is 
normally not the case in at least observational studies) then 
bootstrapping suggest that Granger causality is a powerful tool for 
detecting the direction of causality. As mentioned above in all the 
previous studies performance of different methods has been judged 
when one variable is really cause of the other. This study will serve 
as a guide to those who misuse Granger causality as a test of 
causality without understanding in  its proper context .In this regard 
Granger (1980) himself warned “However, it should be said that 
some of the recent writers on this topic, because they have not 
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looked at the original papers, have evolved somewhat unclear and 
incorrect forms of this definition”. Basically Granger emphasized on 
putting extra statistical information so that asymmetry can be 
introduced but majority of the economists have started using Granger 
causality equation blindly in the hope that significance of the results 
is sufficient to show causal relationship among the variables.  

We have carried out simulation experiment for detecting 
causality for four Data Generating Processes (DGPs) by imposing the 
condition of stationarity. For non-stationary but cointegrated 
variables we have carried out Toda and Yamamoto (1995) procedure 
to determine the direction of causality. These simulation designs and 
methodology will be explained in the next section. In the final 
section results of simulation are reported. 
 
2   Tests for causality testing and Monte-Carlo designs 
2.1  Granger Causality test (1969) 

A particularly simple approach to test for Granger causality is 
to run a regression of the current value of the time series tY  against 
the past values of the time series tX  in the presence of lagged values 
of tY .  

Assume a particular autoregressive having lag length k, and 
estimate the following unrestricted equation by ordinary least squares 
(OLS): 

0
1 1

k k

t i t i j t j t
i j

Y Y X u   
 

                   (2.1) 

0
1 1

k k

t i t i j t j t
i j

X Y X e   
 

        (2.2) 

0 1 2: 0a kH          

0 1 2: 0b kH          
i. If  0aH  is accepted and 0bH  is rejected then there 

exists unidirectional causality from ‘Y’ to ‘X’. 
ii. If  0aH  is rejected and 0bH  is accepted then there 

exists unidirectional causality from ‘X’ to ‘Y’. 
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iii. If both 0 0a bH and H  are rejected then there exists bi-
directional causality (feedback) between ‘X’ and ‘Y’. 

iv. If both 0 0a bH and H  are accepted then ‘X’ and ‘Y’ 
are independent. 
It is to be noted that Granger test is based on assumption that the 
variables ‘X’ and ‘Y’ are stationary and t tu and e  are uncorrelated. 
So in all above equations we assume that the variables are stationary 
at levels and t tu and e  are uncorrelated. 
  2.2 Toda and Yamamoto method (1995) 

This method shows how we can estimate vector autoregressive 
(VAR) model formulated in levels and test general restrictions on the 
parameter matrices even if the process may be integrated or 
cointegrated of an arbitrary order. As Granger test and ECM 
approach are based on prior knowledge about the integration and 
cointegration properties of a series. But, in most applications, it is not 
known a priori whether the variables are integrated, cointegrated or 
(trend) stationary. Consequently pretests for a unit root(s) and 
cointegration in the economic time series are usually required before 
estimating a VAR model in which statistical inferences are 
conducted.  

A different procedure, developed by Toda and Yamamoto 
(1995) utilizes a modified Wald test for restrictions on the 
parameters of a VAR (k) model (where k is the lag length in the 
system). Toda and Yamamoto (1995) proved that this test has an 
asymptotic 2  distribution when a VAR (k+ maxd ) model is 
estimated (where maxd  is the maximal order of integration suspected 
to occur in the system). The advantage of this procedure is that it 
does not require knowledge of cointegration properties of the system. 
This test can be done even if there is no cointegration and/or the 
stability and rank conditions are not satisfied. (Zapta and Rambaldi; 
1997) 

Consider the following VAR (k+ maxd ) model in three 
variables case: 
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max max

0 1 1 1 1 1
1 1 1 1

(2.3)
d dk k

t i t i j t j j t j j t j t
i j k j j k

Y Y Y X X w       
     

        
 

max max

1 2 2 2 2 2
1 1 1 1

(2.4)
d dk k

t i t i j t j j t j j t j t
i j k j j k

X Y Y X X w       
     

        
  

 where the error terms 1 2t tw and w  across the different 
equations and within equation are uncorrelated, dmax is the maximum 
order of integration. The lag length in above three equations can be 
determined by using Akaike Information Criterion (AIC) and 
Schwarz Bayesian criterion (SBC).In equation (2.3) ‘X’ granger 
causes ‘Y’ provided that 1 0j j    . We can test the following null 
hypothesis in equation (2.3) and (2.4) by using modified Wald 
statistic: 

0 11 12 1: ... 0kH         (X does not Granger cause Y) 

0 11 12 1: ... 0kH        (Y does not Granger cause X) 
3    Monte Carlo Experiments and the Results 

We have considered six DGPs .The criteria used for the first 
four DGPs were: coefficients for all the three variables  generated are 
such that their sum is less than one in each equation to maintain the 
assumption of stationarity which is basic assumption of Granger 
causality test. DGP(1) and DGP(2) differ only for the hidden variable 
to capture the effect that whether any change in this variable changes 
the causal structure between the other two variables. Similarly 
DGP(3) and DGP(4) differ only in case of third variable. This 
bivariate analysis has been carried out because of their application in 
Economics e.g. export-economic growth causal analysis, energy- 
economic growth relationship and in other studies of economic 
dynamics with pairs of variables. But there might be the case that its 
Capital Formation or Money supply which is affecting both 
economic growth and export and these variables show causal 
relationship just because these both are associated with one of these 
third variable. If export and growth are genuine cause of each other it 
means any change in the level of Capital formation or money supply 
should not affect this causal structure. 
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We have defined the GDP as follows 
 
Xt=Π1Xt-1+ Π2Xt-2+Єt       X  is a (3 x 1) column vector,  
Πi is a square matrix(3x3) and Є is a vector of order 3 x 1. 
Є it are generated  independently from normal distribution with mean 
0 and standard deviation 0 . 
 
Initial values of all the three variables are zeros. 
 
DGP 1  


















90.000
83.002.00
71.00581.0

1           



















80.000
43.000

000

2  

 
DGP 2 


















60.000
83.002.00
71.00581.0

1            



















30.000
43.000

000

2  

 
 
DGP 3 


















90.000
83.002.00
171.00581.0

1           



















80.000
43.000

000

2  

 
DGP 4 


















60.000
83.002.00
171.00581.0

1           



















30.000
43.000

000

2  

 
For Toda and Yamamoto procedure we have used nonstationary 
series and DGPs are as follows; 
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DGP 5  


















100
110
1050.0

1           

















000
5.000

000

2  

 
DGP   6 


















50.000
110
1050.0

1           

















50.000
5.000

000

2  

 
In all the models there is no causality either from X→Y or Y→X but 
these two variables are caused by Z. 
DGP(5) is like DGP(8) of Clark and Mirza (2006) and there is 
cointegration between these two variables.  The difference is once 
again the same that the third variable Z is kept outside while testing 
causality between X and Y. DGP (6) differs from DGP(5) only in Z. 
We have applied Granger Causality procedure for the first four DGPs 
and Toda and Yammamoto(1995) for the DGP(5) and 
DGP(6).Results for the first four DGPs are given in Table 1 and for 
the DGP(5) and DGP(6) in Table 2. 
In all cases 5000 samples of size T+K+100 were generated with the 
fist 100 observations discarded in order to address initial value 
problem which were assumed to be zeros for all the variables. For 
each DGP, six sample sizes were included; T=30, 60, 90,120,240 and 
480. Lags for each DGP are set at one, two and three for the first four 
DGPs and for the remaining two lags are set at two and three. 
Correlation summary for the first four DGPs at sample size 30 and 
60 is given in table 3 and 4 respectively. These tables show that 
whenever there is high correlation chances of causality between two 
variables are higher than the case of low correlation.  

In the body of both the tables 1 and 2, the number shows the 
cases for which variables show causality. The headings of the table 
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are self explanatory. The errors are iid from normal with mean 0 and 
variance 1. The symbol→ means causal direction. 
The experiments written using R-programming language were 
performed for almost a period of 200 hours. Time varied from 30 
minutes to 3 hours depending on the sample size and lag length used 
in the DGP. 

Results for the DGP(1) show that at all lags and at all the 
sample sizes y causes x at least 50% of the time except at lag 3 for 
T=30. Y causes X more than 80% of the time for most of the lags at 
different sample sizes. This implies that power of Granger causality 
test is very low in all such cases. For X→Y there is weak evidence of 
causality only at lag 1 for all the sample sizes. For lags two and 
three, X also seems causing Y and once again power of causality test 
is very low. 

As discussed above that in case of DGP(2), only difference 
is in Z which is generated differently. By changing this Z, causal 
structure between X and Y gets changed in general and particularly 
at small sample sizes. If we observe carefully there was nothing but 
low correlation between X and Y this time which shows less degree 
of causation between X and Y. Similar kind of differences can be 
observed for DGP(3) and DGP(4). 

Causal law is the one which is time tested and does not 
change with slight changes. Correlation on the other hand is very 
sensitive to minor changes in the data. In all these DGPs, there was 
the association between X and Y due to Z. Such associations get 
their nature changed when there is change in the real cause of that 
association. 

Table 2 for the DGP(5) and DGP(6) also show similar 
findings as those of table 1. Only at small sample size there is 
evidence of non causality .At large sample size results are not 
different from that of Granger causality. Both the tests have very low 
power and fail to identify the true causal structure. Therefore, we are 
not in a position to suggest that which of these two methods is 
preferable for testing Causality under the presence of a confounding 
variable.              
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Table 3 and 4 are the correlation summaries of different 
DGPs for sample size 30 and 60 respectively. Other tables are not 
given due to space limitations. However, correlation structures 
remain almost the same for higher sample size. Correlation tables 
show that chances of causality from Y→X are very high when there 
is high correlation.                       
  All this is sufficient to show that these causality tests which are 
based on prediction do not detect causal relation until and unless all 
the confounders are under control which is probably possible only in 
experimental studies and not in observational studies. There is still a 
long way to go to work on this topic of causality which is bread and 
butter of empirical economics. Freedman (1999) “Indeed, casual 
inference requires a lot of skill, intelligence and hard work. Natural 
variation needs to be identified. Data must be collected. Confounders 
need to be considered. Alternative explanations have to be tested.” 
Theory must support to find true causes and one must go deeper into 
the problem rather statistical analysis.  
 
4. Bootstrap simulation 
 
For bootstrap simulation we have picked two variables data of 
Wolde-Rufael (2004). The two variables are GDP and coal data of 
shanghai and if it is assumed that they are related as follows: 

0
1 1

k k

t i t i j t j t
i j

Y Y X u   
 

         Where Y and X are GDP and 

coal respectively. Lags are set at three. We have done bootstrapping 
by resampling regression residuals by having sample sizes of 1000, 
5000 and 10,000. Our results indicate that Granger causality detects 
this causality   90.7%, 90.28% and 90.16% for 1000, 5000 and 10000 
repetition respectively. Obviously magnitude of the parameters of X 
will matter but one may say that in presence of two variables when 
model is known Granger causality is a useful device. All this 
bootstrap has been done using Microsoft Excel. This provides 
evidence that if true model is known and all the relevant variables are 
included then one may test causality by using Granger methodology.                                     
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Table 1     MC simulation result 
DGP Causal Direction T=30 T=60 T=90 T=120 T=240 T=480 

Lag1       
Y→X 0.55 0.86 0.97 0.99 1.00 1.00 
X→Y 0.04 0.04 0.04 0.04 0.04 0.05 
Lag=2        
Y→X 0.54 0.85 0.96 0.99 1.00 1.00 
 X→Y 0.12 0.20 0.29 0.36 0.61 0.90 
Lag=3            
Y→X 0.32 0.67 0.86 0.95 1.00 1.00 

1 

 X→Y 0.14 0.29 0.43 0.58 0.90 1.00 
  Lag1            

2 Y→X 0.16 0.28 0.41 0.52 0.82 0.98 
 X→Y 0.04 0.05 0.05 0.05 0.04 0.05 
Lag=2            
Y→X 0.11 0.20 0.28 0.36 0.65 0.93 
 X→Y 0.05 0.07 0.07 0.08 0.11 0.17 
Lag=3            
Y→X 0.09 0.16 0.24 0.30 0.56 0.88 

  
  
  
  
  
  
  

 X→Y 0.05 0.07 0.08 0.10 0.16 0.30 
 Lag1            

Y→X 0.17 0.30 0.43 0.55 0.84 0.99 
 X→Y 0.03 0.03 0.03 0.03 0.03 0.03 
Lag=2            
Y→X 0.06 0.26 0.38 0.48 0.79 0.97 
 X→Y 0.15 0.08 0.08 0.09 0.11 0.15 
Lag=3            
Y→X 0.12 0.25 0.36 0.45 0.79 0.98 

3 
  
  
  
  
  
  
  

 X→Y 0.05 0.06 0.07 0.08 0.13 0.23 
Lag1            
Y→X 0.06 0.08 0.10 0.12 0.18 0.32 
 X→Y 0.04 0.05 0.04 0.05 0.04 0.05 
Lag=2      

4 

Y→X 0.06 0.07 0.08 0.10 0.15 0.25 
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 X→Y 0.05 0.05 0.05 0.05 0.06 0.06 
Lag=3           
Y→X 0.05 0.07 0.08 0.08 0.12 0.22 
 X→Y 0.05 0.05 0.05 0.05 0.05 0.07 

 
 
 
 
 

Table 2 MC Simulation for DGP 5 and 6  

 
 
 
 
 
 
 
 

DGP Causal   Direction T=30 T=60 T=90 T=120 T=240 T=480 

   Lag=2       

Y→X 0.2166 0.4618 0.6398 0.77 0.9748 0.9998 

 X→Y 0.1382 0.2948 0.459 0.5984 0.8988 0.9948 

  Lag3       

Y→X 0.182 0.102 0.1326 0.1692 0.3016 0.5582 

5 

 X→Y 0.1378 0.0766 0.105 0.1288 0.222 0.421 

  Lag=2       

Y→X 0.0662 0.4048 0.6096 0.746 0.9766 1 6 
  

 X→Y 0.057 0.3096 0.4762 0.6152 0.921 0.9988 

  Lag=3       

  Y→X 0.1008 0.1938 0.3096 0.4134 0.723 0.9626 

   X→Y 0.1006 0.2094 0.3186 0.42360.7614 0.976 
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Table 3   Correlation between X and Y     T=30 

DGP 
 

 Lag 1      Lag2 
 

Lag3 
 

1 Minimum 
Ist Qu 
Median 
Mean 
3rd Qu: 
Max.: 
Causal Direction 
 Y→X 
 X→Y 

-.2640   
 0.3862    
 0.5030   
 0.4912   
 0.6090   
 0.8831   
 
2765 
182 

-0.2996   
 0.3935   
 0.5077   
 0.4940   
0.6061   
 0.8765   
 
2679 
606 

-0.1681   
0.3964   
 0.5063   
 0.4932   
0.6030   
 0.8659   
 
1590 
688 

2 Minimum 
Ist Qu 
Median 
Mean 
3rd Qu: 
Max.: 
Causal Direction 
 Y→X 
 X→Y 

-0.3158   
 0.2103   
0.3233   
 0.3164   
 0.4319   
 0.7850   
 
798 
218 

-0.3351   
 0.2126   
 0.3279   
 0.3181   
  0.4315   
  0.7620   
 
563 
256 

-0.2633   
0.2183   
 0.3309   
 0.3207   
0.4328   
 0.7739   
 
432 
273 

 
3 

Minimum 
Ist Qu 
Median 
Mean 
3rd Qu: 
Max.: 
Causal Direction 
Y→X 
X→Y 

-0.42417   
 0.05386   
0.16209   
 0.15635   
  0.26021   
  0.59631   
 
846 
139 

-0.47646   
 0.05892   
  0.16251   
0.15767   
 0.26104   
0.59170   
 
734 
313 

-0.4231   
 0.0614   
0.1608   
 0.1581   
 0.2620   
0.6072   
 
586 
262 

4 Minimum 
Ist Qu 
Median 
Mean 
3rd Qu: 
Max.: 
Causal Direction 
 Y→X 
 X→Y 

-0.46310   
 -0.02518  
 0.09015   
  0.08891   
 0.20905   
 0.64655   
 
298 
218 

-0.51303   
 -0.02488  
 0.09157   
 0.08965   
 0.20572   
 0.59205   
 
293 
235 

-0.46296   
 -0.02141  
 0.09645   
0.09326   
0.20838   
0.60153   
 
266 
252 
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Table 4   Correlation between X and Y     T=60 

DGP  Lag 1      Lag2 Lag3 
1 
 

Minimum 
Ist Qu 
Median 
Mean 
3rd Qu: 
Max.: 
Causal Direction 
 Y→X 
 X→Y 

-0.01514   
0.42695   
0.50608   
0.49859   
0.57941   
0.82651   
  
4316 
179 

-0.001962   
0.424447   
0.505698   
0.498162   
0.578065   
0.819613   
  
4244 
1021 

-0.08676   
0.42671   
0.50941   
0.50029   
0.58067   
0.81296   
 
3337 
1450 

2 
 

Minimum 
Ist Qu 
Median 
Mean 
3rd Qu: 
Max.: 
Causal Direction 
 Y→X 
 X→Y 

-0.1076   
0.2458   
0.3245   
0.3182   
0.3966   
0.6751   
 
1403 
240 

-0.2142   
0.2443   
0.3223   
0.3183   
0.3976   
0.6806   
 
1002 
327 

-0.1839   
0.2443   
0.3242   
0.3193   
0.3978   
 0.6557   
 
795 
349 

3 
 

Minimum 
Ist Qu 
Median 
Mean 
3rd Qu: 
Max.: 
Causal Direction 
 Y→X 
 X→Y 

-0.30981   
0.08708   
 0.16034   
0.15694   
0.22976   
0.57761   
 
1524 
148 

-0.2538   
0.0872   
0.1594   
0.1567   
0.2300   
0.5208   
 
1316 
403 

-0.30894   
0.08645   
0.16115   
0.15805   
0.23059   
0.51735   
 
1238 
318 

4 
 

Minimum 
Ist Qu 
Median 
Mean 
3rd Qu: 
Max.: 
 Causal Direction 
Y→X 
 X→Y 

-0.361166  
0.009214   
0.092567   
0.089627   
0.170107   
0.489873   
 
407 
239 

-0.375629   
0.009514   
0.090323   
0.089788   
0.171444   
0.580160   
 
364 
258 

-0.35673   
0.01010   
0.09090   
0.09075   
0.17147   
0.48374   
 
336 
243 
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