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Abstract 
Recently, Bodla and Bhatti (2007) revisited Davidson and 
MacKinnon’s (2002) well-known J test and noted that thought the 
test is simple to compute but lack small sample exact test 
computation properties. This paper is one of the attempts to compute 
a new version of the J test and compare its power performance with 
the various existing tests to see the relative strength of our test to be 
called as an approximately most powerful test.  The main objective 
of this paper is to study Monte Carlo evidence on finite sample 
performance of the now modified non-nested tests of mismeasured 
regression models in  EVM, Errors in Variables Models, setting to 
see if the power performance of the new test.  
      Key words:  Nonnested models, power & size of a test, Monte 
Carlo Simulation.     
 
1. Introduction 
 
Two models are called nested if one model is a special case of the 
other. Alternatively, of the two models, if one can be reduced to the 
other by imposing restrictions on certain parameters then they are 
called nested models. For example, 01100 eXH    and 

1221101 eXXH    are nested models because by 

imposing the restriction 02  , H1 becomes H0. In fact, H1 
encompasses H0. If we wish to discriminate these two models, we 
just need to test the restriction on 2 . This is generally done by a t-
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test under ordinary least squares (OLS). On the other hand, two 
models are said to be nonnested (also called separate) if one model 
cannot be reduced to the other model by imposing restrictions on 
certain parameters. For example, 0221100 eXXH   and 

1554431 eXXH    are nonnested models because H1 
cannot be H0 in any way. That means, in this particular setting, one 
model is not a special case of the other.  
 
The literature on nonnested hypothesis testing stems from a 
pioneering seminal work of Cox (1961, 1962) and then followed by 
Davidson and MacKinnon (1981), Doubleman et. el. (1978), 
Ericsson (1986), Hostag and Hein (9190), Bernanke et al. (1986), 
McAleer (1987), Pesaran and Pesaran (1993), Huth et al (1993), 
Silvapulle and King (1993), McAleer (1995), Fan and Li (1995), 
Godfrey (1998), Berger and Mortera (1999), Davidson and 
MacKinnon (1981, 2001, 2002), King (1989, 1998), Camilli ( 2006), 
Huang, et. al. (2006) and Bodla and Bhatti (2007), among others. 
Much of the emphasis in this literature has been on testing non-
nested regression. 
 
Davidson and MacKinnon’s (2002) well-known J test is perhaps the 
most widely used procedure for testing nonnested regression models. 
This test is conceptually simple and easy to compute but not an exact 
test in finite sample.  As a result, a number of attempts have been 
made to improve the finite sample properties of the J test. This paper 
is one of the attempts to assess the power performance of the new 
modified J tests to see the relative strength of our test to be called as 
the most powerful test.  
 
Theoretical properties of non-nested tests in general and the modified 
non-nested tests for errors-in-variables models (EVM) in particular, 
(see, Shumway and Gottrel (1991), Camilli ( 2006) and Huang, et. al. 
(2006) are limited to asymptotic results, whereas real world 
econometric analysis deals with finite samples. Earlier studies by 
Godfrey and Pesaran (1983), Davidson and MacKinnon (1982, 2001) 
and provide some evidence on the small sample behavior of various 
non-nested tests. Their design specificity however, limits the scope 
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of their findings to non-nested linear regression models when all 
regressors are non-stochastic and/or exogenous. The main objective 
of this paper is to study Monte Carlo evidence on finite sample 
performance of the now modified non-nested tests of mismeasured 
regression models in EVM setting. The structure of the rest of this 
paper is as follows. In the subsequent sections the EVM model 
specification is given, the description and the design of the Monte 
Carlo experiment is presented in section three. This includes, data 
generating process of mismeasured models, measurement of EVM 
specification with instrumental variable (IV) and the alternative 
choices of IV parameter selection. Section four demonstrates the 
details of computational aspects of the Monte Carlo study. The 
results of various experiments are presented in section five. The final 
section contains some concluding remarks. 
 

2. The EVM - Model   
Following Chan et al (2005), Camilli (2006) and Bodla and 

Bhatti (2007) non-nested errors-in-variables models - EVM is 
expressed as: 

H0:  y = Xβ + u0, and H1:  y = Zγ + u1   (1) 

where in (1) above the nxk1 matrices of explanatory variables, X and 
Z, contain non-overlapping variables and consist of some or all 
mismeasured variables; i.e., X = XT + V0 and Z = ZT + V1. XT and ZT 
represent the correctly measured components of X and Z whereas V0 
and V1 are the matrices of measurement errors.  The number of 
mismeasured regressors in X and Z are denoted by m0 and m1, 
respectively, so that, m0 and m1 must also be the number of non-zero 
columns in V0 and V1. Each non-zero column in V0 and V1, denoted 
v0i and v1j for i = l,...,m0 and j = l,...,m1, is assumed to be N(0, 2

voi In 

) and N(o, 2
1 jv In)  where we assume that 2

voi  and 2
1Jv   are 

constants (i.e., homocedastic). Godfrey and Pesaran (1983), 
considered a similar model with fixed and stochastic regressors and 
do not considered the issue of mismeasure regressors. One may 
compare their power studies with ours by conducting a similar 
procedure of conducting Monte Carlo experiment with their non-
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stochastic regressor models and the EVM model considered in this 
studied here. 

3. Design of the Experiments 

The Monte Carlo experiments aimed at performance evaluation 
of the IV-based or modified tests for H0 and H1 above are described 
in the following subsections. The first subsection defines the 'true' 
data generating process (DGP) and its 'fixed' alternative followed by 
a discussion of the mismeasured models. Since these EVM 
specifications are to be estimated with instrumental variables, the 
third section discusses alternative choices for these IV matrices and 
the fourth subsection deals with parameter selection. 

Description of the True' DGP and 'Fixed' Alternative 

The experimental design described below is a reproduction of the 
models in and Godfrey and Pesaran (1983), with the exception of the 
introduction of mis-measured regressors. By replicating their Monte 
Carlo design, a direct comparison may be made between their non-
stochastic regressor models and the EVM tests studied here. The 
true, albeit unobservable, DGP for each replication of the Monte 
Carlo experiment is specified by the following model: 

 HT:  y = XTβ + uT.     (2) 
The n observations for each of the k0 columns in XT are generated as 
iid standard normal variates, while β is chosen as a unit vector of 
order k0x1. The error term in (2) is generated as uT ~ N(0, nT I2 ), 

whose variance, 2
T , is given by 
 
      β’β(1 - R2)             k0(l - R2) 

 2
T    =                         =   

    R2         R2 
where R2 in 2

T  above is the coefficient of multiple determination 
for HT given in (2). 
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The 'false' non-nested alternative model is given by: 

HF:  y = ZT + uF,     (3) 

where y represents the true DGP in (2), ZT is an nxk1 matrix of 
explanatory variables, and uF represents an nxl vector of unexplained 
discrepancies between y and rTZ . The condition of non-
orthogonality between XT and ZT is ensured by generating the ith 
column in ZT as follows: 

ZTi = λiXTi + eTi, for all values of i = 1,...,kI;   (4) 

where eTi ~ N(0, In), λi = pi / 21 ip  and pi is the simple correlation 

coefficient between TiX and ZTi. It is assumed for simplicity that pi = 
p, a constant for all i, and that XT and ZT contain no common 
regressors; that is, p ≠ 1 for any i and pi is non-zero for all i. 
Assuming that the value of p is fixed as n increases, HF may be 
viewed as the 'fixed ' alternative of Davidson and MacKinnon 
(2001). 

Although Godfrey and Pesaran (1983) consider both equal and 
unequal numbers of regressors, the case of k0 = k1 = k will be 
undertaken here. 

Description of the EVM 
The mismeasured non-nested models, H0 and H1, are obtained by 
transforming the correctly measured regressor matrices XT and ZT 
into the mismeasured regressor matrices X and Z. The m0 
independent columns of measurement errors for V0 were generated 
as voi ~ N(0, σ2

voiIn) for i = l,...,m0: similarly, v1j ~ N(0, σ2
v1jIn) for j = 

1,...,m1. By adding V0 to the first m0 columns of XT and V1 to the last 
m1 columns of ZT, the mismeasured regressors are defined as X = 
[Xm | Xf] and Z = [Zf | Zm] where Xm and Zm denote mismeasured 
columns in X and Z while Xf and Zf represent the correctly measured 
regressors. The number of mismeasured regressors and the variances 
of the measurement errors are expected to influence the performance 
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of the modified non-nested tests. However, to keep the   number   of  
experiments   within   limits,   it   is   assumed   that   m0 = m1 = m   
and 
σ2

voi = σ2
v1j   =  2

m  for all i and j.  

Description of the IV 

As discussed in earlier section, appropriate instrumental variables for 
the non-nested tests of errors-in-variables models may, under certain 
conditions, be chosen as regressors of one model acting as 
instrumental variables for the other model. In the experiment detailed 
below, the null and alternative hypotheses will each contain the same 
number of correctly measured and mismeasured regressors. (For 
example, when k = 2, m0 = m1 = 1.) In this instance, it is appropriate 
to choose the correctly measured regressor(s) in H0 (H1) as the 
instrument(s) for the mismeasured regressor(s) in H0 (H1). More 
formally, the IV matrix for these experiments is given by W0 = [Zf | 
Xf] = W1. Thus, W0 = W1 is obtained by combining the correctly 
measured columns in X and Z. 

 Parameter Selection 
The IV selection from the regressors of competing non-nested 
models provides a novel and specific approach to the general 
problem of instrumental variable specification. To fully examine the 
properties of the EVM non-nested tests, the chosen experimental 
design involves the 320 design points defined by the following 
chosen parametric values. 

(k, m) = (2, 1), (4, 2) 

R2     = (0.99, 0.95, 0.80, 0.50, 0.30) 
2      = (0.30, 0.50, 0.80, 0.95) 

2
m     = (1.0, 0.25) 

 n       = (20, 40, 60, 100) 

It is expected that, ceteris paribus, the performance of the non-
nested EVM tests will worsen with decreases in the sample size (n) 
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and R2, and with increases in 2  and 2
m . For instance, since 2

m is 

the mismeasurement error variance, as 2
m  approaches zero, this ex-

periment collapses to that of Godfrey and Pesaran (1983) for non-
stochastic regressors. On the other hand, a poor fit of the true DGP, 
as measured by a low value for R2, will make it more difficult for the 
tests to identify the 'true' model. 

4. Computational Details  

All necessary computations of the new modified tests and power 
performance indicators of the new test were conducted using 
FORTRAN programming. The generation of the null and alternative 
hypotheses requires several independently and identically distributed 
normal deviates; the matrices XT, uT, eT, voi, and V1j were generated 
by invoking the DRNNOA subroutine of the IMSL/STAT Library. 
For each of the 320 experiments with 500 replications were 
performed. By setting a 95% probability that the estimated and 
nominal Type-I errors will differ by no more than 0.02: on this point. 

For the chosen instrument W0 = W1 = [Zf | Xf], the non-nested test 
statistics G0, m

0 w
~ and 0

~LM do not exist: see theorem 4.14. Also in 

this instance, J~ 0 = J A~ 0 and m
0J~ = m

0A~J . Computationally, it is 
easier to work with the squares of these test statistics, so that the 
statistics computed for these experiments will be 2

0J~  and  
2m

0J~  each 

following a 2
1X distribution under H0. By interchanging the roles of 

H0 and H1, the values 2
1J

~  and  
2m

1J~  serve as the test of H1. 

The performance indicators calculated for each experiment are the 
mean, variance, skewness and kurtosis of the empirical distribution, 
the x2 goodness-of-fit test, and Type-I error, Type-II error, and 
power measures for 2

0J~  and  
2m

0J~ .  
The mean, variance and coefficients of skewness and kurtosis for the 
sampling distributions of  2

0J~  and  
2m

0J~ are calculated by invoking 



International Journal of Applied Econometrics and Quantitative Studies   Vol. 5-2 (2008) 
 

 94 

the DUVSTA subroutine of the IMSL/ STAT Library. Similarly, by 
calling DCHIGF, the Chi-square goodness-of-fit measures are 
obtained. Since the sample observations for each statistic are divided 
into 20 equal groups, the goodness-of-fit test will have 19 degrees of 
freedom. 
The Type-I errors, Type-II errors, and powers of these tests are 
tabulated at the three conventional significance levels: α = 0.01, 
0.05, 0.10. In order to determine appropriate critical values for each 
significance level, the IMSL/STAT subroutine DCHIIN was 
invoked. The empirical Type-I and Type-II errors for a test, say 2J~ , 
are respectively defined as the proportion of times in 500 
replications that 2

0J~  is greater than, and 2
1J

~ is less than, the critical 

value of 2
1X  for a certain value of α. On the other hand, the power of 

a test represents the proportion of times that neither a Type-I nor 
Type-II error occurs. The standard errors for the Type-I error, Type-
II error and power of each test are also estimated. The estimated 
standard error, say for the size of a test, is given by  √ 

500 / )p̂-(1p̂ where p̂  denotes the estimated Type-I error. 

5. Results of the Experiments  

The full sets of Monte Carlo results are very long and hence here for 
the sake of simplicity in explosion we have summarized these results 
in tables 5.1 to 5.3. For our computational purposes, we have 
computed the sizes and powers for the 2

0J~  and 
2m

0J~ for all values of 
n = 20, 40, 60, and 100, permitting a direct evaluation of the 
approach to the asymptotic distribution. In our computation we have 
considered all combinations of the values of R2 = (0.99, 0.95, 0.80, 
0.50, 0.30) and 2  = (0.30, 0.50, 0.80, 0.95) for a given set of 
values for k, m, and 2

m .  In particular, for table 5.1, set k = 2, m = 

1, 2
m  = 1.00, table 5.2, set k = 4, m = 2, 2

m  = 1.00, table 5.3, set k 

= 2, m = 1, 2
m  = 0.25, and table 5.4.1 - 5.4.20  set k = 4, m = 2, 2

m  
= 0.25.  
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For different sample sizes (n) and a given set of other parametric 
values, each table reports the estimated mean (M), variance (V), 
coefficients of skewness (S) and kurtosis (K), and the goodness-of-
fit measure (x2) for 2

0J~  and 
2m

0J~ . The estimated Type-I and Type-II 
errors and power of each statistic at 1%, 5% and 10% significance 
levels, with standard errors in parentheses, are reported in the last 
nine columns of each table. 

The observed size estimates in all tables that depart significantly 
(i.e., differ by more than two standard errors) from their nominal 
values are marked with an asterisk. Similarly, the goodness-of-fit test 
(x2) exceeding X2

19 at the a = 5% level is so marked (X2
19,0.05   

30.144), indicating a lack of fit between the empirical distribution 
and the theoretical x2

1 distribution. The theoretical mean of these 
distributions is one (the degrees of freedom of the x2

1 distribution), 
so that the amount by which the empirical mean (M) differs from 1 is 
the estimated bias. Analogously, the theoretical variance is two 
(twice the degrees of freedom of the x2

1distribution). Thus, a cursory 
examination of each table reveals the behavior of a test for different 
sample sizes as well as a comparison between 2J~  and 

2mJ~ for a 
given set of parameters. However, evaluating the tests for different 
parametric values involves inter-table comparisons. Some of the 
interesting results of this experiment are now discussed. 

As expected, the observed means, variances, measures of goodness-
of-fit, and sizes of both tests generally approach their theoretical 
counterparts as the sample size gets larger. For example, the size of  

2J~  in Table 5.1 moves from 0.046 at n = 20 to 0.082 at n = 100 

when   = 0.10; similarly, the size of  
2mJ~ ranges between 0.068 

and 0.074. Increasing sample sizes also yield higher powers for 
those tests with correct sizes; e.g., in table 5.1 at α = 0.10, 

2mJ~ has 
the correct size for all sample values while its power increases from 
27% at n = 20 to 67% at n = 100. 
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The relative performance of  2J~  and 
2mJ~ can also be seen from 

these results. A careful examination of each table, in all of the four 
sets, reveals that the observed significance levels of  2J~  are 

generally less than the corresponding values of   
2mJ~ . However, the 

means of both tests are not usually farther apart (with the exception 
of the results reported in tables below for R2 = 0.80, 0.95 and 2  = 

0.95), suggesting that the lower size of  2J~  is most likely caused by 
the lower values of its variance and kurtosis. Moreover, the power of 

2mJ~ generally exceeds that of 2J~  (when each test has the correct 

size). As an example, in those cases where  2J~  and  
2mJ~ each have 

correct Type-I errors, selected powers of these tests have been 
reproduced below when n = 100. 
 
           Table 5. 1: Selected Estimated Powers    
   

α = 0.01 
 

α = 0.01 
 

α = 0.05 
 

α = 0.01 

(1) 2J~  
2mJ~  

0.374 
 

0.670 

0.320 
 

0.676 

0.890 
 

0.942 

0.824 
 

0.970 

(2) 2J~  
2mJ~  

0.020 
 

0.024 

0.018 
 

0.024 

0.058 
 

0.066 

0.082 
 

0.086 

Notes: (1) R2 = 0.99 and 2 =0.30,   (2)  R2 = 0.30 and 2 =0.9 

The higher power of 
2mJ~ over 2J~  is quite encouraging, since the 

modified test,
2mJ~ , is also the easiest of the two tests to compute. 

(Recall that mJ~ can be viewed as the direct t-ratio in a compound 

model, whereas J~ cannot be calculated on existing software). An im-
portant caveat to this claim of high power also needs to be made - in 
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some instances, the 
2mJ~ test fails to reach the correct size even in 

samples as large as 100.  

The Monte Carlo results in Godfrey and Pesaran (1983) measure an 
expected decline in the power of non-nested tests ceteris paribus 
with decreasing 2 . The same trend applies to the EVM non-nested 

tests. For example, the power of 
2mJ~ as R2 decreases when n = 100 

and a = 0.10 are 0.810, 0.792, 0.746, 0.622 and 0.464.   On the other 
hand, the effect of 2  in this experiment is not the same as those 
reported by Godfrey and Pesaran for the case of non-stochastic 
regressor models, since 2  plays two competing roles here. First, 
the increased value of 2   increases the efficiency of the IV 
estimators of H0 which may increase the power of the modified tests. 
Second, with increasing values of 2 , differentiating between the 
null and fixed alternative hypotheses becomes increasingly difficult 
and the power of a non-nested test may decline. The power of 2J~ and 

2mJ~  (when these tests have correct sizes) increases in all four sets 

when 2  increases from 0.30 to 0.50 while other parameters are 
fixed. For example, the powers of ˜J2 are reproduced below for those 
instances in which R2 = 0.99, n = 100 and α = 0.01. From these 
results, it is noted that the power of 2J~ (and also that of 

2mJ~ not 

tabulated here) increases up to a point ( 2  = 0.50) and then begins 
to decline. In one instance, the drop in power is quite dramatic — 
note for group 4 that power drops from 94% when 2  = 0.50 to 
45% when 2  = 0.95. Thus, it is interesting to conclude that for this 
particular experimental design, at lower levels of 2 , an increase 
from 0.30 to 0.50 causes the efficiency effect of the IV estimators of 
H0 to dominate, causing an increase in the power of  2J~ and 

2mJ~ . 

Further increase in the values of 2 (i.e., greater than 0.50) will 
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cause in declining the powers. This is due to the increased closeness 
between the null and fixed alternative hypotheses. 

              Table 5.2 Selected estimated power 
             k= 2 

m = 1 
2
m = 1.00 

 

k= 4 
m = 2 
2
m = 1.00 

 

k= 2 
m = 1 
2
m = 0.25 

 

k= 4 
m = 2 
2
m = 0.25 

 
2  = 0.30           0.374               0.320       0.832          0.824 
2  = 0.50            0.484               0.458       0.950          0.940 
2  = 0.80            0.310               0.300       0.938          0.942 
2  = 0.95            0.052               0.052        0.470         0.454 

The effects of (k, m) on the performance of 2J~ and 
2mJ~ can also be 

isolated.   In general, both tests exhibit the correct Type-I error more 
often when (k, m) = (2, 1) than when (k, m) = (4, 2). Moreover, for 
these cases in which valid comparisons can be made, power declines 
when (k, m) increases from (2, 1) to (4, 2). However, the differences 
in powers are usually less pronounced for higher values of n and R2 
and low values of 2 , i.e., n = (60, 100) , R2 = (0.99, 0.95, 0.80) and 

2  = (0.30, 0.50), whereas differences in power are otherwise quite 
substantial. Finally, a divergence between the estimated powers of 
the 2J~ and 

2mJ~ tests is more likely to be found as k and m increase. 
The performance indicators generally reveal marked improvements 
when 2

m , the mismeasurement error variance, declines from 1.00 to 

0.25. In these tables where 2
m  = 0.25, the observed values of 

various measures are mostly in close proximity to their true values; 
the notable discrepancies in the mean, variance, and size of 

2mJ~ occur when n = 20, R2 = 0.95, 0.80, and 2  = 0.95, refer table 
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5.3.The effect of 2
m on power is typified in the following, where the 

powers of 2J~ for n = 20, 100, a = 1%, R2 = 0.99, and 2  = 0.30. 

Interestingly, power actually declines when 2
m declines in the small 

sample case (n = 20). It is only when n = 100 that improvements in 
power are associated with declining mismeasurement errors for the 

2mJ~ test. Finally, the size and power of  
2mJ~ for 2

m   = 0.25 are 
compared with those of Type-I Error and Power Comparisons of 

mJ~ and J2. The size or Type-I errors and powers of J2 (in the 

columns marked 2
m  = 0) are reproduced from McAleer (1987) as 

originally computed by Godfrey and Pesaran (1983). The asterisk 
here denotes the Type-I errors that are significantly different from a 
= 0.05. 
    Table 5.3: Type-I Error and Power Comparisons of 

2mJ~ and J2  

n = 20, R2 = 0.50, a=0.05 

  Size 
 

Power 
k 2  2

m  = 0.25 2
m   = 0.00 2

m   = 0.25 2
m   = 0.00 

 2 0.30 0.050 0.062 0.376 0.834 
 0.50 0.070 0.044 0.324 0.766 
 0.80 0.072 0.054 0.200 0.418 
 0.95 0.054 0.052 0.098 0.126 

4 0.30 0.052 0.142* 0.236 0.778 
 0.50 0.060 0.108* 0.264 0.732 
 0.80 0.070 0.074* 0.160 0.416 
 0.95 0.044 0.072 0.094 0.108 

Godfrey and Pesaran's (1983) values for J2 where 2
m  = 0 (i.e., the 

case of non- stochastic regressors ). Fixing R2 = 0.50 and a = 0.05, 
provides an expected decrease in power with increasing values of 

2 , 2
m  and k. There exists a marked difference between the 

powers of J2 and 
2mJ~ for lower values of 2  while it is insignificant 
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when 2  = 0.95. It may also be expected that such differences will 
diminish in large samples (n =  100) or with higher values of R , 
since the power of  mJ~ in these cases reaches the maximum. 
However, the published results of Godfrey and Pesaran (1983) are 
not available for such parametric values and no direct comparisons 
are possible to prove the point. Finally, the small sample over-
rejection of H0 seems to be a serious problem for J2 when k = 4 and 

2  = 0.30, 0.50, and 0.80 whereas 
2mJ~ has correct sizes. 

In general, the EVM non-nested tests have performed as expected.   
For this particular Monte Carlo design, these tests appear to be most 
useful when R2 and n are relatively large (i.e., R2 > 0.80 and n > 40) 
and 2

m  is moderately low (i.e., 2
m  = 0.25). The effect of 2  on 

power is ambiguous. 
 

6. Concluding Remarks 
This study, for the first time in the econometric literature, provides 
Monte Carlo evidence on the behavior of non-nested tests that 
involve IV estimation of mismeasured regression models. The 
design of the Monte Carlo experiment involves a true DGP and a 
fixed alternative hypothesis suggested by Godfrey and Pesaran 
(1983), while some of the explanatory variables in both models are 
then designed to be mismeasured. Instrumental variables are chosen 
to be the correctly measured regressors in the competing model. Dif-
ferent combinations of the values of n, R2, k, m and 2

m  are 
specified; the mean, variance, coefficients of skewness and kurtosis, 
measure of goodness-of-fit, Type-I errors, Type-II errors and powers 
of two modified tests are then derived. 
The results from the 320 outcomes are obtained for the squared 
values of J~ = A~J and mJ~ = mA~J . The mean, variance, size, 
goodness-of-fit measure, and power of J~ and mJ~ significantly 
improve as the sample size increases. For all combinations of R2 and 

2 , both tests have the correct size in large samples. The powers of 
mJ~ are generally higher than those of J~ , ceteris paribus. Powers of 
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the J~  and mJ~ tests are reasonably high for those combinations 
involving n = ( 100, 60), R2 = 0.99, 0.95, 0.80) and 2  = (0.30, 

0.50). A substantial increase in the powers of J~  and mJ~ , for these 
parametric values, occurs when 2

m  decreases from 1.0 to 0.25. In 
general, power is directly related to n and R2, and inversely related to 

2
m  and k. One interesting outcome of these experiments involves 

the two competing roles of 2  in the determination of the power of 

J~ and mJ~ . An increase in 2  from 0.30 to 0.50 causes a significant 

increase in the power of J~ and mJ~ , while any further increase in 
2  (i.e., 0.80 or 0.95) causes power to decline. The former increase 

in power may be attributed to increased efficiency of the IV 
estimators of H0, and the latter decrease in power may be related to 
the increased closeness between the null and fixed alternative 
hypotheses. These Monte Carlo results are necessarily limited to the 
chosen experimental design. Nonetheless, they establish a plausible 
case for testing non-nested mismeasured regression models using 
readily available instrumental variables. The computational 
convenience of mJ~ , supplemented with its generally high power, 
enhances its practical utility for applied researchers. 
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