Signaling of the fractalkine receptor CX3CR1 and its natural genetic variants: impact of receptor non-synonymous single nucleotide polymorphisms

Andrea García-Silva¹, Rocío A. de la Fuente¹, Andrea G. Izquierdo¹, María I. Loza¹, Javier Costas², <u>Marián Castro¹</u>

¹Universidade de Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), 15782 Santiago de Compostela, Spain

²Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain

The chemokine receptor CX₃CR1 is a $G_{i/o}$ G protein-coupled receptor (GPCR) expressed in monocytes, NK cells, T lymphocytes, astrocytes and microglia, among other cells, and it plays an important role in inflammation and immunity as well as in neuron-microglia communication in the Central Nervous System [1]. Its known ligand is fractalkine (CX₃CL1), the sole member of the CX₃C chemokine subfamily. Genomic studies have identified non-synonymous single nucleotide polymorphisms (nsSNPs) in the *CX₃CR1* gene. Specifically, the common receptor genetic variant CX₃CR1-V249I/T280M has been associated with faster progression to disease in HIV-infected patients, cardiovascular atheroprotection, increased risk of age-related macular degeneration, and obesity [2]. We aimed to investigate the possible functional impact of the currently identified nsSNPs of CX₃CR1 on the pharmacology of this receptor.

Receptor interaction with G protein-coupled receptor kinase 2 (GRK2) and beta-arrestins were investigated in transfected HEK293 cells by bioluminescence resonance energy transfer (BRET)-based assays. Our results indicate that the CX-₃CR1-V249I/T280M receptor variant interacts with more efficacy than the wild type receptor with beta-arrestins 1 and 2 (Emax 146% and 204% of wild type, respectively) and GRK2 (Emax 310% of wild type) in response to fractalkine. The functional impact of this observation on the dynamics and compartmentalization of the receptor signaling is being further investigated. Being GRKs and beta-arrestins crucial regulators of G protein-dependent and -independent signaling of GPCRs [3], our findings expand our current knowledge on the signaling pathways modulated by CX₃CR1 and their possible implications in physiological and pathological condition.

<u>Acknowledgements</u>: This work is funded by the Spanish Ministry of Economy and Competitiveness (MINECO) (SAF2014-57138-C2-1-R).

References:

[1] Smit M.J. Lira S.A. and Leurs R. (eds) (2011) Chemokine Receptors as Drug Targets, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; Paolicelli R.C. and Gross C.T. (2011) Neuron Glia Biol 7: 77-83; Bachelerie F. et al. (2013) Pharmacol Rev 66: 1-79.

[2] Faure S. et al. (2000) Science 287: 2274–2277; McDermott D.H. et al. (2003) J Clin Invest 111: 1241–1250; Combadière C. et al. (2007) J Clin Invest 117: 2920– 2928; Sirois-Gagnon D. et al. (2011) Obesity (Silver Spring) 19: 222-7; Wu J. et al. (2014) Dis Markers 913678.

[3] Schmid C.L. and Bohn L.M. (2009) Pharmacol Ther 121: 285-93; Shukla A.K. et al. (2011) Trends Biochem Sci 36: 457–469.

Receptors & Ion Channels