

Dynamic Mass Redistribution phenotypic assay for identifying ligands active at GPR35

receptors.

<u>González-García A</u>, Gómez-García L, Cadavid MI, Loza MI, Brea J

Drug Screening Platform/BioFarma Research Group. CIMUS Research Center. University of Santiago de Compostela. Health Research Institute of Santiago de Compostela (IDIS).

Introduction

GPR35 is an orphan receptor reported to be involved in inflammatory disorders^[1], CNS disfunction^[2, 3], pain^[4], diabetes^[5] and immunologycal diseases such as asthma^[6, 7]. Kinurenic acid^[1], 2-oleil lisophosphatidic acid^[8] and recently chemokine CXCL17^[8] have been suggested as potential endogenous ligands but without confirmation; showing differences in efficacy between human and rat orthologues^[7]. Phenotypic assays based on Dynamic Mass Redistribution (DMR) revealed as powerful tool screening libraries in orphan receptors which signalling pathways and biology remain unknown. We aimed to develop a miniaturized phenotypic assay based on DMR label-free technology^[9] that enables the detection of new ligands for human and rat GPR35 receptors.

Material & Methods		
Cell Seeding	Buffer exchange	DMR measurement

HT-29 (ATCC) Culture medium: McCoy's 5A (ATCC 30-2007) + FBS-dyaliced (Sigma F0392) 10% + Penicillin-Streptomycin (Sigma P781) + Hepes 25mM pH=7.4.

IEC-6 (ATCC)

Culture medium: DMEM (ATCC 30-2002) + FBS-dyaliced (Sigma F0392) 10% + Insulin (Sigma I1882) 0.1 u/mL Penicillin-Streptomycin (Sigma P781) + Hepes 25mM pH=7.4.

10000-30000 cell/well. Volume: 50µL in LFC-384 well microplates (PerkinElmer 6057408). O/N 37ºC CO₂ 5%.

HT-29 (ATCC)

Assay Buffer: McCoy's 5A (ATCC 30-2007) or HBSS (Sigma H6648)

+ Hepes 20mM pH=7.4 + DMSO 0.01%.

IEC-6 (ATCC)

Assay Buffer: HBSS (Sigma H6648) or DMEM (ATCC 30-2002) + Hepes 20mM pH=7.4 + DMSO 0.01%.

JANUS[®] Liquid handler

Wash cycles = 3 Wash volume = 25μ L Asp/disp speed = 10μ L/sec Asp/disp height = 2mm Final soack volume = 50μ L

Thermal Equilibration: 90'Inside EnSpire reader

Baseline measurement: 15 repeats

Compound addition: Volume: 10µL Dispense speed = 10μ L/sec Dispense height = 2mm

Mix after addition: Cycles: 3 Volume: 20µL Dispense speed = 20μ L/sec Dispense height = 2mm

Final measurement: 60 repeats (1 per minute)

Fig.1. Effect of Zaprinast at HT-29 cells.

A: Sigmoidal concentration-response curve for Zaprinast effect using HBSS as assay buffer. B: Sigmoidal concentration-response curve for Zaprinast effect using McCoy's 5A medium as assay buffer. C: Sigmoidal concentration-response curve for Zaprinast and Pamoic acid effect at 15000 cells/well using McCoy's 5A medium as assay buffer. D: Kinetic response plot of Zaprinast at 15000 cells/well using McCoy's 5A medium as assay buffer. The mean ± SEM (vertical bars) of each measure determined in triplicate of the percentage of inhibition is shown.

Fig.2. Effect of Zaprinast at IEC-6 cells.

A: Sigmoidal concentration-response curve for Zaprinast effect using HBSS as assay buffer. B: Sigmoidal concentration-response curve for Zaprinast effect using DMEM medium as assay buffer. C: Sigmoidal concentration-response curve for Zaprinast and Dicumarol effect at 15000 cells/well using HBSS as assay buffer. D: Kinetic response plot of Zaprinast at 15000 cells/well using HBSS as assay buffer. The mean ± SEM (vertical bars) of each measure determined in triplicate of the percentage of inhibition is shown.

Conclusions

The optimal conditions for activity measurement at HT-29 (hGPR35) cell line: 15000 cells/well and McCoy's 5A (ATCC 30-2007) medium as assay buffer. The optimal conditions for activity measurement at IEC-6 (rGPR35) cell line: 15000 cells/well and HBSS (Sigma H6648) as assay buffer. We have developed miniaturized phenotypic assays based on DMR label-free technology to measure the agonist or antagonist activity of compounds in human and rat cell lines expressing the orphan GPR35 receptor.

References

[1] Hu H, Deng H, Fang Y. Label-free phenotypic profiling identified D-luciferin as a GPR35 agonist. PLoS One 2012;7(4):e34934. [2] Shore DM, Reggio PH. The therapeutic potential of orphan GPCRs, GPR35 and GPR55. Front Pharmacol 2015 Apr 15;6:69.

[3] O'Dowd BF, Nguyen T, Marchese A, Cheng R, Lynch KR, Heng HH, et al. Discovery of three novel G-protein-coupled receptor genes. Genomics 1998 Jan 15;47(2):310-313. [4] Alkondon M, Pereira EF, Todd SW, Randall WR, Lane MV, Albuquerque EX. Functional G-protein-coupled receptor 35 is expressed by neurons in the CA1 field of the hippocampus. Biochem Pharmacol 2015 Feb 15;93(4):506-518. [5] Taniguchi Y, Tonai-Kachi H, Shinjo K. Zaprinast, a well-known cyclic guanosine monophosphate-specific phosphodiesterase inhibitor, is an agonist for GPR35. FEBS Lett 2006 Sep 18;580(21):5003-5008. [6] Chung S, Funakoshi T, Civelli O. Orphan GPCR research. Br J Pharmacol 2008 Mar;153 Suppl 1:S339-46. [7] Jenkins L, Brea J, Smith NJ, Hudson BD, Reilly G, Bryant NJ, et al. Identification of novel species-selective agonists of the G-protein-coupled receptor GPR35 that promote recruitment of beta-arrestin-2 and activate Galpha13. Biochem J 2010 Dec 15;432(3):451-459. [8] Berlinguer-Palmini R, Masi A, Narducci R, Cavone L, Maratea D, Cozzi A, et al. GPR35 activation reduces Ca2+ transients and contributes to the kynurenic acid-dependent reduction of synaptic activity at CA3-CA1 synapses. PLoS One 2013 Nov 29;8(11):e82180. [9] Development Guide For Cell-based Label-free Assays – A Guide for Assay Development on the PerkinElmer EnSpire Multimode Plate Reader with Label-free Technology, 1st Edition (2013), PerkinElmer.

Funding: We gratefully acknowledge grant support from Xunta de Galicia (10CSA203006PR).