

en Química Biolóxica e Materiais Moleculares

Conferencia:

Function of Chirality-Responsive Dynamic Helical Polymers

Katsuhiro Maeda

Nano Life Science Institute (WPI-NanoLSI), Kanazawa University

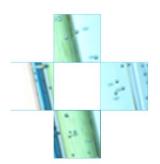
16/03/18

Aula de Seminarios do CIQUS

.

10:00 h

Más información: www.usc.es/ciqus



XUNTA DE GALICIA CONSELLERÍA DE CULTURA, EDUCACIÓN E ORDENACIÓN UNIVERSITARIA

Katsuhiro Maeda

Affiliation:

Nano Life Science Institute (WPI-NanoLSI), Kanazawa University

Contact:

1C617 Kakuma-machi, Kanazawa 920-1192, Japan E-mail: maeda@se.kanazawa-u.ac.jp

Education:

- 1993 B.S. Faculty of Engineering, Nagoya University
- 1995 M.S. Graduate School of Engineering, Nagoya University
- 1998 Ph.D. Graduate School of Engineering, Nagoya University (Supervisor: Prof. Yoshio Okamoto)

Professional Career:

- 1998-2002 Research Associate, Graduate School of Eng., Nagoya University (Prof. Eiji Yashima)
- 2002-2007 Lecturer, Graduate School of Eng., Nagoya University (Prof. Eiji Yashima)
- 2007-2008 Designated Lecturer, Institute for Advanced Research, Nagoya University
- 2008-2015 Associate Professor, Institute of Science and Eng., Kanazawa University
- 2015-2017 Professor, Institute of Science and Eng., Kanazawa University
- 2017-present Professor, Nano Life Science Institute (WPI-NanoLSI), Kanazawa University

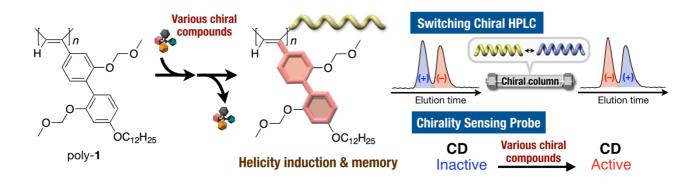
Scientific Activities:

2015-2017 Guest Professor, Harbin Engineering University, China

Research Interests:

supramolecular chemistry, polymer chemistry, chiral materials, molecular recognition

Honors:


Award for Encouragement of Research in Polymer Science; The Society of Polymer Science, Japan (2002), The Excellent Presentation Award for Young Scientists: The Society of Polymer Science, Japan (2005), Thomson Reuters Research Front Award 2012: Thomson Reuters (2012)

Function of Chirality-Responsive Dynamic Helical Polymers

Katsuhiro Maeda

Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Graduate School of Natural Science and Technology, Kanazawa University

The helix is an essential structural motif for many biopolymers, as represented by double helix in DNA and α -helix in proteins. Their helical structures are considered to play an important role in performing their excellent functions. Therefore, the synthesis of helical polymers with a controlled helix sense has been attracting much interest in the fields of polymer and supramolecular chemistry not only for mimicking biological helices, but also for developing new chiral materials. In this presentation, I will introduce our recent works on the development of stimuli-responsive helical polymers utilizing structural features of dynamic helical polymers. These polymers showed intriguing chiral discrimination ability and chiral amplification phenomena based on their unique helical conformation [1-3]. For example, we found that the helix sense of a polyacetylene derivative bearing 2,2'-biphenol-derived pendants (poly-1) was reversibly switched and memorized in the solid state as well as in solution upon interaction with the opposite enantiomeric alcohol followed by its removal, which allowed us to develop the first switchable chiral stationary phase for high performance liquid chromatography (HPLC) [4,5]. Poly-1 also responded to the chirality of a large variety of chiral compounds including alcohols, amines, esters, ethers, amino acid derivatives, and hydrocarbons, thus showing induced circular dichroisms (CDs) in the polymer backbone region due to the formation of preferred-handed helix. Owing to the chiral hydrocarbons [6].

References:

- [1] Yashima, E.; Maeda, K.; Iida, H.; Furusho, Y.; Nagai, K., Chem. Rev. 2009, 109, 6102-6211.
- [2] Yashima, E.; Ousaka, N.; Taura, D.; Shimomura, K.; Ikai, T.; Maeda, K., Chem. Rev. 2016, 116, 13752-13990.
- [3] Maeda, K.; Yashima, E., Top. Curr. Chem. 2017, 375, 72.
- [4] Shimomura, K.; Ikai, T.; Kanoh, S.; Yashima, E.; Maeda, K., Nat. Chem. 2014, 6 (5), 429-434.
- [5] Ishidate, R.; Shimomura, K.; Ikai, T.; Kanoh, S.; Maeda, K., Chem. Lett. 2015, 44, 946-948.
- [6] Maeda, K.; Hirose, D.; Okoshi, N.; Shimomura, K.; Wada, Y.; Ikai, T.; Kanoh, S.; Yashima, E., J. Am. Chem. Soc. 2018, DOI: 10.1021/jacs.7b10981.