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Presentation of the Problem

Problem
Given 1 € D C R” we want to evaluate the output

sS(p) = 1°(u*(n)in) € C,

where u€(11) € X€ is the solution of the PDE

a®(u®(u),vip) = fé(vip), ve X

with a fast procedure.
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Presentation of the Problem

Problem
Given 1 € D C R” we want to evaluate the output

s¥(p) = (u*(1)) € G,

where u€(11) € X€ is the PDE

a*(us(p),vip) = fo(v), ve X5

with a fast procedure.
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Presentation of the Problem

Given 1 € D C R” we want to evaluate the output
s¥(p) = (u*(1)) € G,
where u€(11) € X€ is the PDE
a*(uf(p),vip) = fo(v), ve X5,

with a fast procedure.

Difficulty

Implicit relation between the input and the output through the
resolution of a PDE.

| A\

N
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Application Examples

The applicative context

Optimization

4

Many queries
are needed.

Control

4

Real-time
evaluations.
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Application examples

Example 1: Design problems using materials.

Application examples:

photonics and microoptics,

embedded antenna.

(5|Ql y Qg5 €| :u|92) € R47
(Ex(n), Ey(1), Hz(1)),

Focusing in a certain region.




Application examples

Example 2: Active real-time control

Application examples:  Noise control.

Crg T e
v = (U(M)aV(M)yp(M)),

u(p) =

s(u) = Energy on a certain part

of the domain
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Application examples

Example 3: Geometric Design using Reduced Element Method

Application examples: Modeling of hierarchic problems,
geometric design, e.g.,

minimization of scattering.

W
é u(p) = (Ex(i), Ey(p), Ha(1)),
——=

s(#) = Energy on a certain part

of the domain

Y. MapAy, E. M. RoNQUIST. A Reduced-Basis Element Method.
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Application examples

Example 3: Geometric Design using Reduced Element Method

Application examples:

%
Y| | =
B |

Pm

Modeling of hierarchic problems,
geometric design, e.g.,

minimization of scattering.

characteristic lenghts

(Ex(1); Ey(1), Hz(11)),

Energy on a certain part

of the domain

Y. MapAy, E. M. RoNQUIST. A Reduced-Basis Element Method.
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Obtaining an Approximate Solution

To build a method providing a rapid, accurate and reliable
approximation of the output.
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Obtaining an Approximate Solution

The Goal

To build a method providing a rapid, accurate and reliable
approximation of the output.

V.

The Selected Approach

@ Discretize the EDP using a (very accurate) Galerkin
approximation called the truth approximation. Compute the
output using this solution.

© Apply a model order reduction method to drastically reduce
the dimension of the discrete space:

> Similar accuracy.
Reduced basis method 2> Much faster.

2> A posteriori error estimators.

v
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The Truth Approximation

Definition (Truth Approximation)

Let us introduce the approximation space X with dim(X) = .

The solution of the approximate problem
Find u() € X such that
a(u(p),vip) = f(v), veX,
is called the truth approximation of the problem.

We define the truth approximation of the output by

&



The Truth Approximation

When the truth approximation is non-conforming, the operators
a®(-,;-), f¢(-) and the norm || - || xe might not be well defined for
elements on X. We'll consider discrete versions.
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The Truth Approximation

Remark

When the truth approximation is non-conforming, the operators
a®(-,;-), f¢(-) and the norm || - || xe might not be well defined for
elements on X. We'll consider discrete versions.

v

Some Requirements on the Truth Approximation

@ The approximation is stable and accurate when A/ — oo.

@ We assume that ||u®(p) — u(p)||x is suitably small.

o Consequently, N' might be very large.

&



The Truth Approximation

Assumptions on the Operators

@ f(-) continuous linear form:

(V)]

veX ”VHX

> f-
@ a(-,-; i) bilinear operator uniformly continuous on D:

a(u, v; p
Y(p) = sup sup latu, vi )

S ’Yaa vlu € D
uex vex llullxlviix

@ The inf-sup parameter 3(x) is bounded away from zero
uniformly on o € D (well-posedness):

0 < fo < Bu) = inf sup ALV
weX vex [lullx]Iviix

Y eD.
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The Reduced Basis Approach: A Motivation

Observation

@ For each 11 we seek the solution on X.

&



The Reduced Basis Approach: A Motivation

Observation

@ For each 11 we seek the solution on X.

o Theset M = {u(n), p € D} C X is a smooth manifold of
dimension “much smaller” than N.

e
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The Reduced Basis Approach: A Motivation

The Main ldea: Reduce the Basis

We might expect a good approximation using a Galerkin approach
using solutions for “well chosen” sampling of parameters as base
functions.

u(py) u(y)

ﬁ X,

&



The Reduced Basis Method: The Algorithm

Step 1: Construction of the Reduced Basis.

@ We introduce the nested set of samples:
Sy = {,ltj eD, je {1,...,N}}, N e {1,...,NMAx}.
@ We construct the reduced basis approximation spaces

Xy = span (é-J = U(,le), je {177N})
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The Reduced Basis Method: The Algorithm

Step 1: Construction of the Reduced Basis.

@ We introduce the nested set of samples:

Sy = {,Uj eD, je {1,...,/\/}}, N e {17-~-aNMAX}-
@ We construct the reduced basis approximation spaces

Xy = span (gj = U(Nj)7 jG {177/\/})

v

Step 2: The RB Solution. ..

@ For a given u € D we solve the RB problem

Find un(pt) € Xy such that
a(un(p),vip) = f(v), VveXy.

\
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The Reduced Basis Method: The Algorithm

Step 2: ...and the RB Output.

@ Compute the reduced basis output

sn(i) = flun(p))-
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The Reduced Basis Method: The Algorithm

Step 2: ...and the RB Output.

@ Compute the reduced basis output

sn(i) = flun(p))-

4

Remark on the Output.

We have that

sn(p) —s(u) = flun(p) — ulp)) =0, Galerkin orth.
= a(u(p), un(p) — u(p)) — alun () — w(pe), un(p))
= a(un(p) — u(p), un(p) — u(p)),

that implies superconvergence?.

“N. A. PIERCE ET AL. Adjoint Recovery of Superconvergent Functionals...

v
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The Reduced Basis Method: Some Nice Properties...

Properties of the Reduced Basis Method

@ Exponential convergence towards the truth approximation is
numerically observed for a good choice of Sy:

lun(p) = u()lx ~ Ce N, a>o0.

@ For many problems we can choose N < .

@ A posteriori error estimates with respect to the truth
approximation can be obtained, certifying the RB solution.
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The Reduced Basis Method: Some Nice Properties...

Properties of the Reduced Basis Method

@ Exponential convergence towards the truth approximation is
numerically observed for a good choice of Sy:

lun(p) = u()lx ~ Ce N, a>o0.

@ For many problems we can choose N < .

@ A posteriori error estimates with respect to the truth
approximation can be obtained, certifying the RB solution.

The Ultimate Goal is ...

@ ...to compute sy(u) with a computational cost A/
independent.

e Not always possible!!! a(w, v;u) = /g(x,u)w(x)v(x) dx
Q
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The Reduced Basis Method: An Important Assumption

The Affine Assumption.

If a(,-; ) satisfies the affine assumption? (variable separation
property)

Qs
a(u,v;p) = Z@q(u) aq(u,v),
g=1

an off-line on-line strategy can be followed.

®» The computations on the off-line part are ;1 independent.
They are done once and for all.

> The number of computations on the on-line part is V'
independent.

“BARRAULT, MADAY ET AL. An "empirical interpolation” method. . .
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The Reduced Basis Method: The Off-line On-line Strategy

N
We have that uy(i) = Z (1) &
j=1
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The Reduced Basis Method: The Off-line On-line Strategy

N
We have that uy(i) = Z (1) &
j=1

sn(p) = flun(p))

Il

<
>~
—
=
~—

-
—
A2y
-

&



The Reduced Basis Method: The Off-line On-line Strategy

N
We have that uy(i) = Z (1) &
j=1

sn(p) = flun(p) = ZUR/(M) (&) -
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The Reduced Basis Method: The Off-line On-line Strategy

N
We have that uy(i) = Z (1) &
j=1

sw() = flun(p)) = Zva(u) F(&) ]

v

Computation of the RB Solution

The coefficients uh (1), i € {1,..., N} satisfy Vi € {1,..., N},

a (T, (W &in) = &),

N




The Reduced Basis Method: The Off-line On-line Strategy

Computation of the Output

N
We have that uy(i) = Z (1) &
j=1

sw() = flun(p)) = Zva(u) F(&) ]

v

Computation of the RB Solution

The coefficients uh (1), i € {1,..., N} satisfy Vi € {1,..., N},

a (T, (W &in) = &),

< |l

S (28 0aln) 26(65:6) ) wh(w) (&) -

N




The Reduced Basis Method: The Off-line On-line Strategy

Computation of the Output

N
We have that uy(i) = Z (1) &
j=1

sw() = flun(p)) = Zva(u) F(&) ]

v

Computation of the RB Solution > Details

The coefficients uh (1), i € {1,..., N} satisfy Vi € {1,..., N},

a (Zszl ()&, & u)

S (52,00 20(6:8)]) whln)

f(gi)a

~

I < |
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References on Reduced Basis
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A Priori Theory: Well-Posedness

Theorem (Well Posedness)

Let us assume that the discrete inf-sup parameters satisfy

0< fo < inf sup M
ueXn vexy [lullxllviix

Then the RB problem

Find uy(1) € Xy such that
a(un(p),vin) = f(v), YveXy,

is well-posed.

Bens



A Priori Theory: Error Estimates
Theorem (RB Solution)

Under the same assumptions of the previous theorem, we have that

_ Rl DRI _
lu(e) = un()llx - < (1+242) inf lu(r) - wlx.
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A Priori Theory: Error Estimates
Theorem (RB Solution)

Under the same assumptions of the previous theorem, we have that

- < R(ORNY - .
lu(e) = un()llx - < (1+242) inf lu(r) - wix

<

Conjecture on the Best Approximation Error

The best approximation? 2 error behaves like

inf - ~ e N .
Jnf llu(u) = wlix ~ ™%, a>0

Y. MADAY ET AL. A Priori Convergence Theory for RB Approx. . .
bY. MADAY, A. BUFFA,... In preparation.
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A Priori Theory: Error Estimates
Theorem (RB Solution)

Under the same assumptions of the previous theorem, we have that

- < R(ORNY - .
o) = en()lx < (1+742) inf flu(e) — wilx

Conjecture on the Best Approximation Error

The best approximation? 2 error behaves like

A\

inf — ~e N .
W|£XN||u(u) wix ~e *, a>0

?Y. MADAY ET AL. A Priori Convergence Theory for RB Approx. . .
bY. MADAY, A. BUFFA,... In preparation.

A\

Theorem (Superconvergence on the Output)
Under the same assumptions, the error on the output satisfies

2
—sn(p)| < A(u (ORI —wl}.
s(n) = s < () (1+242)° inf () — wlk




A Posteriori Theory: Obtaining the Reliability

@ An a posteriori error estimator that certifies the RB approx.
with respect to the true approx. can be constructed.

@ When the affine assumption is satisfied, the computation of
this quantity can be performed using an off-line on-line
strategy.

&



A Posteriori Theory: The Main ldeas

Truth approximation

2

{&,6, ...

1
2

,2

2

|

a§N7T’N+17' o

"
Ul

[ {u]

|

N}

F

A |

v

RB approximation

XN = {517527"'55N}
Alf,l UKI = F
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A Posteriori Theory: The Main ldeas

Truth approximation

RB approximation
X = {51 527 --,§N777N+1»"' 77’/\/’}
U £ {617527"'55N}
Al2 1 1
) = Al Uy = A
Asa Uy J F J
The equations for the error
Ay AL [ U 0
Ag,l Ag,z J Uﬁt J F» — Ag,l UK/ J
F Al o Al Uy
[FZ :||:Ag,1 A22:| 0 ]




A Posteriori Theory: The Main ldeas

Truth approximation

RB approximation
X = {517527 "a"gN:nN-l-l?"'vnN}
L . {61,&,. -, én}
Al Alp U F1 P
1% 1% - Al’l UN - Fl
Ap1 Ass U; Fa
The equations for the error
U — Uy Ay AL T 0
VN N N R e
F AL1 AL Uy
|:F2 :|_[A£L,1 A;,z] 0 :l




A Posteriori Theory: The Main ldeas

Truth approximation

X = {&,&, - NNt TN}
Al Al Uy B F1 Xn = {&,&,...,¢én}
!A Ao | !U;J i {sz ALy Uy =
) F Ut sho= F - UL ,
o leJ[UfJ
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A Posteriori Theory: The Main ldeas

The equations for the error

|

s — sy

|

Fr

A |

Uy — Uy
Uy

|
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A Posteriori Theory: The Main ldeas

The equations for the error

|

st

'

_ M
SN

|
|
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w w
A1,1 A1,2

AL AL |

F {U{‘—UK,

Uy

|
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Ul — U
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A Posteriori Theory: The Main ldeas

The equations for the error

Ro[u-us
SH_SIF\LI o

Rl w |
CAL AL, Tul T U
E NI v
aoaL, Tur—ug IUfux
E NI v

)
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A Posteriori Theory: The Main ldeas
The equations for the error

Ro[u-us
s — sy :
LzJ { ]
AL AL U [u-ug
A A || u ] { |
AL AL Tubsuy [ursug
Al

E NI

1
{ 0 [ Al AL [ 0
F2 — Ag,l U/A\L/ J Ag,l Ag,z J F2 — Ag,l Uﬁ J
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A Posteriori Theory: Preliminaries

One Assumption and Some Notation

@ We assume that we can build () such that

0 < fo < Bu) < Br), YueD,

with a (low) on-line evaluation cost independent on N.

@ We define the residual of the reduced basis problem by
R(v;pn) = f(v) — alun(p),v;pn), YveX,

and we introduce its dual norm

en(p) = sup
() = sup =0

&



A Posteriori Theory: Estimator for the RB Solution

Definition (Error Estimator for the RB Solution)

We define the error estimator for the reduced basis solution by

EN([L)
An(p) = —=—=, YV ueD.
! Br)
Theorem (Efficiency)
The efficiency of the estimator
An(p)

nn(p) =

lun () — u()llx”

satisfies the following inequalities

v(1)
1 < nn(p) < B(n)

VY ueD, VNE{].,...,NMA)(}.

Bens



A Posteriori Theory: Estimator for the RB Output

Definition (Error Estimator for the Output)

We define the error estimator for the output by

Aj(p) = VueD.

Theorem (Efficiency)

The efficiency of the estimator for the output

-1 0)
W)= ety — SOl

satisfies,

1 < n,sv(u), VMED,VNE{l,...,NMAx}.

(&



A Posteriori Theory: How to Compute ey(u)

Deriving an Off-line On-line Strategy...

Using the Riesz Representation Theorem we know that

|R(v; 1) X
€ = sup —(—— = . )
) sex vlix PR llx

where pﬁ(,w) € X satisfies Vv e X

(P)/g(.;u),V)X = R(v;p)
= f(v) —a(un(p),vip)

&



A Posteriori Theory: How to Compute ey(u)

Deriving an Off-line On-line Strategy...

Using the Riesz Representation Theorem we know that

R(v:
en(p) = sup ROk
veX HVHX

X
”PR(.;H)”X,
where pﬁ(,w) € X satisfies Vv e X

(P)/g(.;ﬂ),V)X = R(v;p)
= f(v)—a(un(p),vip) =

Qa N
F(v) = DD Oqln) un(i) ag(é, v).

q=1 k=1

&



A Posteriori Theory: How to Compute ey(u)

Deriving an Off-line On-line Strategy... cont...

Thus, by linear superposition and uniqueness

Q. N
p)fg(-;u) = Pff(.) - Zzeq(ﬂ) “K/(/L) P;i,(gk,.),

q=1 k=1
and consequently

en(p) = l(ﬁ,}f(.)apfci.))x +

N
Zukl 1) ©q(k) UN(N) (/1) (Paq(gk )7paq(gk ))
=1
1
2

Q N -
222%[%) OT0) (v i, x| |

(&



A Posteriori Theory: How to Compute ey(u)

» Details

Deriving an Off-line On-line Strategy... cont...

Thus, by linear superposition and uniqueness

Q. N
p)fg(-;u) = Pff(.) - Zzeq(ﬂ) “K/(/L) P;i,(gk,.),

g=1 k=1
and consequently
en(p) = l(ﬂ,}f(.)apfci.))x +

N
SOV i) Ogi) k() Bl [ (0K ey s )X

(PR P )X

N
Mo
()=
3
—
=
=X
—~
=
~
@
L
—~
=
~

| —

1
2
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A Posteriori Theory: How to Compute (()

Characterization of 3( )

. la(u, v; )]
GB(p) == inf sup ————
() = Inf sup I vix

Bens



A Posteriori Theory: How to Compute (()

Characterization of 3( )

Using the Riesz Representation Theorem we have
- [ra
B(1) := inf sup la(wvi )| _ e DPatuim X
weX vex flullxliviix — wexlullx

&



A Posteriori Theory: How to Compute (()

Characterization of 3( )

Using the Riesz Representation Theorem we have
; . . b(u, u;
B(u) = inf sup 2 Vi)l [ bl uii)
ueX vex [lullxlviix ueX (u, u)x
where

b(u? 7 /L) = (pf(u,-;,u)’pf(v,-;,u))x’ v (U, V) e X2
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A Posteriori Theory: How to Compute (()

Characterization of 3( )

Using the Riesz Representation Theorem we have
; . . b(u, u;
B(u) = inf sup 2 Vi)l [ bl uii)
ueX vex [lullxlviix ueX (u, u)x
where

b(u? 7 /L) = (pg(u,-;p)’p?(v,-;u))x’ v (U, V) e X2

We introduce the hermitian generalized eigenvalue problem:

Find (6(u), A\(12)) € X x R
b(0(u), vipm) = AMu)(0(n),v)x, YveX.

&



A Posteriori Theory: How to Compute (()

Characterization of 3( )

Using the Riesz Representation Theorem we have
; . . b(u, u;
B(u) = inf sup 2 Vi)l [ bl uii)
ueX vex [lullxlviix ueX (u, u)x
where

b(u? 7 /L) = (pg(u,-;p)’p?(v,-;u))x’ v (U, V) e X2

We introduce the hermitian generalized eigenvalue problem:

Find (6(u), A\(12)) € X x R
b(0(u), vipm) = AMu)(0(n),v)x, YveX.
Using Raleigh's quotient arguments: S(1) = v/ Amin(1t)-

&



A Posteriori Theory: How to Compute (()

For the sake of clarity we'll assume that
a(u,vip) = apy1(u,v) + 25:1 1q ag(u,v), V¥ (u,v) € X2

|




A Posteriori Theory: How to Compute (()

We introduce

b(u,vipifi) = blu,vif)) + oy (up up)

We define the set

D, = {MED, / b(u, u; i i) > 0, VUGX}v
and
; - b(u,u; i

(uvu)

.




A Posteriori Theory: How to Compute (()

We introduce
Ob

Hp
We define the set

e = {MED, /Z)(u,u;p,;ﬁ) > 0, VuEX}7

and

~ . B(u, u; ;1)
b= f ———= D;.
T(u, ,u) ulgx (U, U)X , Yue i

b(u,vipifi) = b vif)) + T (up = fip) 5—(u,vifi).

Lemma (Properties of D~ and 7( , 7))
@ The set Dy, is convex.
o The function (1, fi) is concave in i over Dj.
o We have that 5(1) > 7(p, i), V p € Dy.

&



A Posteriori Theory: How to Compute (()

Construction of the Lower Bound (( ) > Model Problem

e We consider €3 € (0,1).

o We introduce a set of points fi;,j € {1,...,J} and associated

polytopes P;LJ. C ng such that

J

D C UPﬁj, Coverage condition
j=1

min 7(u; fij) > €g B(fij). Positivity condition

JUS i
@ We define the lower bound of the inf-sup parameter by

B(p) = min g B(fi;)-

JE{L,m TPy,

&



On the Construction of the Reduced Basis

Algorithm

@ Construct S a very fine mesh of the range of parameters.

@ Select y11 randomly.
o Forj: 1,---7NMAX do
o Compute u(y;) and add it to the reduced basis.
Orthonormalize. The reduced basis dim. is N = j.
e Update the reduced basis information.
o Select y1j41 such that
et A P el

&



On the Construction of the Reduced Basis

The computational cost of the algorithm will highly depend on the
choice of the distance Dist(-,-).

J




On the Construction of the Reduced Basis

The computational cost of the algorithm will highly depend on the
choice of the distance Dist(-,-).

About Dist(, -)

o If Dist (u(n), un(r)) = |Ju(p) — un(p)|lx it will be very
expensive. It is included on the off-line part...

o If Dist (u(u), un(r)) = Ap(n) the method is much
cheaper. We only compute the true approximation for the
Nyax selected parameters.

&



Extensions: When f(-; ) # I(; ). . .
Given 11 € D C RP we want to evaluate the output

s(u) = Hu(p)in) € C,

where u(p) € X is the solution of the PDE

a(u(p),vip) = f(v;p), ve X.

¥



Extensions: When f(-; ) # I(; ). . .
Given 11 € D C RP we want to evaluate the output

s(p) = I(u(n);ip) € C,

where u(p) € X is the solution of the PDE

a(u(p),vip) = f(vip), ve X.

Obtaining the adjoint state () € X such that

a(g,v(u);pn) = loipn), o€ X,

it turns out that

f(o(p)i ) = a(u(p),v(p); ) = (u(w); 1)

é\)



Extensions: When f(-; ) # I(; ). . .

Step 1: Construction of the Primal and Dual Reduced Basis

@ We introduce the nested set of samples:

55 — {,Lf’ep, je{l,...,N}}, Ne{l,..., Nuax},
Sdu = {M;'Uep, je{l,...,M}}, Me{1,..., Muax),

@ We construct the reduced basis approximation spaces for the
primal and dual problems

XP = span (g;” = u(u), je {1,...,N}),
XAdAu = Span (Ejdu = d)(ﬂjdu)a .j E {1’ RS M}) *

&



Extensions: When f(-; ) # I(; ). . .
Step 2: The Primal and Dual RB Solutions. The RB Output

o Given 4y €D

Find un(1) € X§ and ¢m(p) € Xg such that
a(un(p),vip) = f(vip), YveXy,
a(d, vm(p)ipn) = Heip), Ve X

@ Compute the reduced basis output

sn() = Iun(p); 1)

S(M) _ SN(,Uf) =5 /(U(M) — UN(,U'); :u)
= a(u(p) — un(p), Y(p); 1)

T



Extensions: When f(-; ) # I(; ). . .
Step 2: The Primal and Dual RB Solutions. The RB Output

o Given 4y €D
Find un(1) € X§ and ¢m(p) € Xg such that
a(un(p),vip) = f(vip), YveXy,
a(d, vm(p)ipn) = Heip), Ve X

@ Compute the reduced basis output

sv(pe) = Nun(p); p). )
s(p) —sn(p) = I(u(p) — un(p); 1)
a(u(p) — un(p), Y(p); )

= 3
= a(u(p) — un(p), (1) — Pm(p); 1) +
f(om(p); 1) — alun (), Ym(p); 1)-

A
T



Extensions: When f(-; ) # I(; ). . .
Step 2: The Primal and Dual RB Solutions. The RB Output

o Given 4y €D
Find un(1) € X§ and ¢m(p) € Xg such that
a(un(p),vip) = f(vip), YveXy,
a(d, vm(p)ipn) = Heip), Ve X

@ Compute the reduced basis output

snom(p) = Iun(u); ) — alun (), Ym(p); 1) + F(m(p); 1)
s(u) —sn(p) = Iu(p) — un(p); 1)
= a(u(p) — un(p), ¥(1); 1)
= a(u(p) — un(p), (1) — Pm(p); 1) +
f(¥m(p); n) — alun(p), vm(); p)-

v

T



The NonAffine Case

When

a(v,wip) = /Qg(x,,u)v(x)w(x) dx +---

the off-line on-line computational strategy does not apply.

The Main Idea
We approximate g(x, 1) by

M

gm(x 1) = D o (1)qm(x).

m=1

The approximate bilinear functional will satisfy the affine
assumption.

&



The NonAffine Case

Some Requirements for the Approximation

To reduce the computational cost of the on-line procedure:

@ The evaluation of () must have a low computational cost
(N independent).

@ M must be as small as possible.

&



The NonAffine Case

The Selected Approach

We apply:
@ An interpolation procedure for the computation of o™ (1).

In consequence, we also have to determine the interpolation
points and a interpolation prodedure.

@ An approximation space for the expansion exploiting the p
dependence:

Sy o= {uf, ie{1,...,M}},
WE = span(g(1f), ie{l,..,M})
= span(qi(:), i€{l,..,M}).

&



The NonAffine Case
The Selected Approach

We apply:

@ An interpolation procedure for the computation of M (1).
In consequence, we also have to determine the interpolation
points and a interpolation prodedure.

@ An approximation space for the expansion exploiting the p
dependence:

Sy o= {uf, ie{1,...,M}},
WE = span(g(1f), ie{l,..,M})
= span(qi(:), i€{1,..,M}).

Some Notation

g;\k/l(7) = argmianWﬁ, ||g(-,/L)—Z||,

em() = gl n) — gyl w)ll-

N



The NonAffine Case

Building the Approximation Space

Let =; be a rather fine mesh of D.

o pf =arg min |g(-, 11)]],
ME=

—&
o Sf ={ui}.
o WE = span(g(-, 11§),
@ For M € {2,..., Mpmax}

° iy = argln;i_n em—1(1),
L :g
o Sy =Spy_1U{nyl

o WE = span(g(-,/i£), m e {L,...M}).
e EndFor

&



The NonAffine Case

Defining the Interpolation Points

o xf = arg ess s:g g (x, 1f),
X

8 15)

° ql() = g(Xig,,uf) L

@ For M e {1,..., Mpax}
M-1

o We solve Z UJM_qu'(X,'g) = g(xf, ufy),
j=1
{1<i<M-1}
M—1
o m(-)=g(,uf)— > o q(),
=i
o x% =argesssup |rm(-)],

xEN
m(°)

° qu() =

rm(xiy)’
e EndFor

N



The NonAffine Case

The Interpolation Procedure

In this way, for a given i € D,

M
gm(x, 1) = Y om (1) qm(x),

m=1

where ©M(11) satisfy the lower triangular linear system

M
> Bimel(n) = gl<f.pn),  1<I1<M,
m=1

with Bim = gm(xF).

&



The NonAffine Case

Numerical Example

We interpolate the function

1

g(x, 1) = 7

where Q = [0,1]? and D = [-1,-0.1]2.

(1 — 1) + (x2 — p12)?

o oo
-0.1 o o 0.9
-0.2 - 0.8¢
°
5 °. 07 s .
o
—04 - 0.6
q
= -05 : =" 05
; o
-0.6 | 04¢-2 &
i g
¢
-0.74 o " 03fo
H © o
-08 : 0.2} o
-09 iy 01 Q,o..oo.. " -
-1 -0.8 -0.6 -04 -0.2 0 0 0.2 0.4 0.6 0.8

N



The NonAffine Case

L2 Interp. Error




The NonAffine Case

Numerical Example

We interpolate the function

1
\/2 — M1 — M2 — sin(57ru1x2) - sin(37rx1)

g(x, 1) =

where Q = STAR_DOMAIN and D = [—1,—0.1]2.

R R R AR oo 3
0.1 C -
02 °. fo 8
] I O ! ° s 04
-04f o " ) o

= -05 a & o
—06 - o2
-07 | 04
-0.8 ; -06
09 5F

= Z08 ~06 N 0.2 [} B

N




The NonAffine Case

L2 Interp. Error
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Outline of the Presentation

@ The Model Problem
@ The Geometry, Equations and Difficulties
@ The True Approximation: DGFEM
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The Model Problem: A 2D Maxwell Application

Geometry of the Problem

(921 : ng

|

0.25 :
<Jraneancoa z
:
04| 1

: | ;

1 :

[ é

1 :

' :

|

e : .......... 05 ........... ,
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The Model Problem: A 2D Maxwell Application

The Primal Problem

0 (10E¢ 10E; :
_ 2_Fe I et X _ = Y — JwJE 0
woekEs By (M 3y n 8x> iwlty, in €,
0 (10E: 10ES
2 e R X = Y o Je in Q
w 5Ey I <M By 1 Dx > iwdy, in €,
EZny, EZny, on [,
The RHS and Output The Coefficients
S =0 1 w = 5;, p = 1, inQ,
Jy = cos (w (y = 2>> or;,
£1 = 1, in Ql,
e e € =
s*((Ex, Ey)) = /Q E:+Ey dx. gp € [1,4], in Q.

v

&



The Model Problem: A 2D Maxwell Application

& ove
_w25\y§ = ﬁ lawx _l Y
dy \p 9y  p Ox

) + X5 in Q,

0 [(10ove 1 0VeE
—wreve = (28 20T in Q
ety 8x<,u dy ,u(‘)x) * X, In i
Vin, = \Il;nx, on [,

&



The Model Problem: A 2D Maxwell Application

@ Singularities on the tips of the antenna.

Im(E ). ¢ = 3.0678

J@MM



The Model Problem: A 2D Maxwell Application

@ Singularities on the tips of the antenna.

@ For several values of £; the frequency w = 57/2 is a
resonance.

g2 : w=5m/2 is a resonance

1.5434 | 1.6357 | 1.8532 | 2.2456
2.5569 | 2.6983 | 3.8615 | 4.0033

For those values, (3(¢2) vanishes!

J@MMV



The Model Problem: A 2D Maxwell Application

@ Singularities on the tips of the antenna.

@ For several values of £; the frequency w = 57/2 is a
resonance.

()

J@MMV



The True Approximation: Discontinuous Galerkin

@ Mesh locally refined on

the tips of the antenna.

@ 7 elements = 282.
@ Polynomials of order 4.
e Points/\ > 12.5.

@ 7+ Degrees of freedom
N = 11844,

09

08

07

086

05

04

03

02

0.1

02

04

06
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Conclusions and Future Work

Conclusions

2> We have shown the feasibility of a RB approach for harmonic
time dependent wave propagation problems using DG for the
true approximation.

2> We remark numerically an exponential rate of convergence on
the number of elements of the basis.

2> An a posteriori error estimator that certifies the RB solution
with respect to the true approximation can be constructed.

2> We have presented efficient methods for the basis
construction.

&



Conclusions and Future Work

Conclusions

2> We have shown the feasibility of a RB approach for harmonic
time dependent wave propagation problems using DG for the
true approximation.

2> We remark numerically an exponential rate of convergence on
the number of elements of the basis.

2> An a posteriori error estimator that certifies the RB solution
with respect to the true approximation can be constructed.

2> We have presented efficient methods for the basis
construction.

®» We have found complications on the neighborhoods of
resonances.

&



Conclusions and Future Work

A\ 2 2 A /

\{

Use of different meshes for the primal and dual problems when
computing the true approximation.

Efficient and accurate way for computing 3P (1.).

Strategy for the resonances.

Extension to nonaffine functionals and nonlinear problems.
Possible extension to time-dependent wave propagation
problems.

Combination of reduced basis method with domain
decomposition techniques (RB + Mortar, RB + DG).

&



@ The On-line Off-line Strategy

@ Some Proofs

© Lower Bound of the Inf-Sup Parameter
© Riesz Representation Theorem

@ True Approximation for the Model Problem: DG
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The Off-line Part of the Algorithm

The computations: Done once and for all.

@ Construction of the reduced basis:

u(uj) = fj, jG{l,...,NMAx}.

e Compute
f(gi)a iE{]-?"'?NMAX}'

o Compute the matrices V g € {1,..., Qa},

aCI(gJ'vé‘i)? (’71) € {17 o0y NMAX}2'

&



The On-line Part of the Algorithm

The computations: # of comp. independent on N
@ Ensembling the RB matrices:

#Comp. ~ Q, x N°.
@ Ensembling the RB RHS and output terms:
#Comp. ~ N.

@ Solving the full linear systems for the primal and dual RB
problems:
#Comp. ~ N5.

o Compute the RB output:

#Comp. =~ N.

&



Computation of ey(u): Off-line part.

The computations: Done once and for all.

@ Obtaining the following Riesz representation elements
X
P¥(y
pi(fkﬁ)’ A (q, k) € {1, 0004 Qa} X {1, Cey NMAX}-
@ Compute the X-dot product of those elements:
(P77 X
(pi(ik,')’p?fa(f;,'))x’ v (qv 4, ka /;) € {17 veag 03}2 X {13 BERE) NMAX}za

(pif(.)ap;;(gk,.))xa V (67 k) € {17 et Qa} X {17 R NMAX}7

&



Computation of ey(u): On-line part.

computations: # of comp. independent on A/

@ The first term (involving the terms f(-)):
#Comp. ~ 1.
@ The second term (involving the terms a4 (¢} -)):
#Comp. =~ Qf x N2,
@ The third term (involving the crossed terms):

#Comp. ~ Q, x N.

&



@ The On-line Off-line Strategy

@ Some Proofs

@ Lower Bound of the Inf-Sup Parameter
© Riesz Representation Theorem

@ True Approximation for the Model Problem: DG
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Proof of the Well-Posedness of the RB Problem

The existence and uniqueness are guaranteed by the discrete
inf-sup parameter assumption. That condition also implies the

existence of pa(uN(“) 0 € Xn /

o lanllx 1% X
< Na(un (1) 230y I
X
= |f(p a(ALIIN(M H))‘
< [[f()llx ||P (o), 10

which implies the continuity with respect to the RHS.

&



Proof of the a Priori Estimates

Using the discrete inf-sup condition we know that for all w € Xy

there exists pi,(("t’w(u)_w’.;“) € Xy such that

BO(,“) lun () — wlix ||,0:<('\,IJN(M)_W7.W)||X <
‘B(UN(M) - Wap:((,\LI,N(“),W’_;M);M)‘ <

&



Proof of the a Priori Estimates

Using the dlscrete inf-sup condition we know that for all w € Xy

there exists pa(u ()—w,ip) € Xn such that

Bo1) Nun(2) = wllx 1230w llx <
|a(u (M)_Wapf(,\lw(u) w,- M)'M)‘ <
V(i) = wllx oot =iy X5

where we've used the Galerkin orthogonality of up (1) — u(w)
on Xy.

&



Proof of the a Priori Estimates

Proof

Simple computations show that
s(u) — sw(u)l = [F(u(p) — un(p); 1)l

= la(un(p) — u(e), un () — u(pe); 1)

< () u(p) — un ()]l

We finally use the estimate on the reduced basis approximation to
conclude.

&



Proof of the a Posteriori Error Estimator Inequalities

We have that

Blp) <
<

<

inf sup
veX weX

|la(v, w; 1)

Iviixliwlix

|la(u(p) — un(p), wi )|

sup

wex [[u(i) = un (i)l xlwllx

sup sup
veX weX

|a(v, w; p)|

Iviixliwlix

(=

(=

= B(n))

nn (1)

v(1))-

Dividing these inequalities by (1) we conclude the proof.

(1))

&



Proof of the a Posteriori Error Estimator Inequalities

We have that

laun () — u(pe), un(pe) — u(p); )|
|R(un(p) — ulp)i 1)
< en(p) lun(p) — u(p)llx.

Isn(p) — s(u)l

Using the inf-sup condition, 3 pi((l\ll!N(M)—U(M) ) € X such that

N

Bl)llun(p) — L’(,U)HXHPf(uN(H)_u(H)’.;H)“X
< la(un(p) — u(p), pf(”uN(,,,)_u(,,,),.;u); )|

J@MMV



Proof of the a Posteriori Error Estimator Inequalities

We have that

laun () — u(pe), un(pe) — u(p); )|
|R(un(p) — ulp)i 1)
< en(p) lun(p) — u(p)llx.

Isn(p) — s(u)l

Using the inf-sup condition, 3 pi((l\ll!N(M)—U(ll) ) € X such that

Bl)llun(p) — L’(,U)HXHP:?\Z,N(H)_U(PL)’.;H)“X
< la(un(p) = u(p), pf(”uN(,,,)_u(,,,),.;,L); 1)

X .
o |R(pa(’\lluv(u)—uw)w;u)"u)|

X
< en(1) 120y agyam X

J@MMV



Proof of the a Posteriori Error Estimator Inequalities

We have that

laun () — u(pe), un(pe) — u(p); )|
|R(un(p) — ulp)i 1)

Isn(p) — s(u)l

< en(p) llun(p) — ()l x-
We have thus ()
— u(p ENE)
Jun(p) — u(p)llx < )

We combine both inequalities to conclude the proof.

J@MMV



@ The On-line Off-line Strategy

@ Some Proofs

© Lower Bound of the Inf-Sup Parameter
© Riesz Representation Theorem

@ True Approximation for the Model Problem: DG
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A Posteriori Theory: How to Compute 37" (1)

BP" (1)

&



A Posteriori Theory: How to Compute 37" (1)
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A Posteriori Theory: How to Compute (57 (1)
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A Posteriori Theory: How to Compute 37" (1)
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A Posteriori Theory: How to Compute (57 (1)
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P,
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A Posteriori Theory: How to Compute 37" (1)

BP" (1)

s P (11)

Py Prs Pii, Priy
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@ The On-line Off-line Strategy

@ Some Proofs

© Lower Bound of the Inf-Sup Parameter
© Riesz Representation Theorem

@ True Approximation for the Model Problem: DG
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The Riesz Representation Theorem p p

Theorem (Riesz)

Let f(-) be a continuous linear functional from a K-Hilbert space H
(into the field K ). Then, there exists a unique p’f"(.) € H such that

f(x) = (pf,x)u, ¥V x € H,

where (-, )y denotes the inner product on H. Moreover, we have
that

| (x)| H
Nf()llH = sup = |lpssllx,
) P Tl )
f(x
pf() = arg sup LU
xeH |Ix|lx

&



Appendix

@ True Approximation for the Model Problem: DG



The True Approximation: Discontinuous Galerkin

2> We rewrite Maxwell equations as a first order system
1
introducing the magnetic field H, = —curl E:
i phw
H.
iewkEy = OH; - Jy,
Ay
. OH
iewk, = — 8xz - Jy,
G5 OE,
juwH, = - ==
L By x

&



The True Approximation: Discontinuous Galerkin

@ We introduce a mesh of the computational domain:
Q = b~
k
@ We introduce the approximation space

X = {¢=(¢1,02,03) € (L*(Q))* such that ¢|px € (Po(D¥))*},

@ We consider the approximate solution

(Ex,E/, H;) € X.

&



The True Approximation: Discontinuous Galerkin

@ We multiply the equations by a test function ¢ € X.

e We integrate on an element DX.

. OH,
(I€WEX7¢1)D/< — (W7¢1)Dk - (JX7¢1)5D/<7
. OH,
(iewEy, $2)p, = _(§7¢2)Dk - (Jy, 2)sDy
. OE, OE
(ipwHz, ¢3)p, = (8y _a_Xy7¢3)Dk-




The True Approximation: Discontinuous Galerkin

@ We multiply the equations by a test function ¢ € X.

e We integrate on an element DX.

@ We apply the Green's formula. At the interfaces we have two
values. We have to define those traces.

(iewEx, ¢1)p, =

(iewEy, $2)p, =

(iNWH27¢3)Dk —

091

—(He, 50 )os

09
(H27 T;)Dk

99
_(Exv T;)Dk

99
+(Ey7 8X3 )Dk

_l’_

H, ny,¢1)sp,
I, $1)5D;»
H, ny. $2)s5D,
Jys $2)sDy>

Ex ny, ¢3)5Dk

(Ey Ny, ¢3)5Dk'




The True Approximation: Discontinuous Galerkin

The traces: Central fluxes -+ stabilization terms

We use central fluxes with a stabilization term:

+ . - + . -
Bo= xIb g o BEFE
2 2
o~ Hf + H; _
Hz = % _|_ T (E;’_ n;_ _I_ EX ny —
Ef nf — E; ny)

The stabilization parameter 7
is given by:
p(p+1)

= o —-

meas e
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