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Abstract. We propose and analyze a second order pure Lagrangian method for variable co-
efficient convection-(possibly degenerate) diffusion equations with mixed Dirichlet-Robin boundary
conditions. First, the method is rigorously introduced for exact and approximate characteristics.
Next, [ (H") stability is proved and [°°(H") error estimates of order O(At2) are obtained. More-
over, 1°°(L?) stability and [°°(L?) error estimates of order O(At?) with constants bounded in the
hyperbolic limit are shown. For the particular case of Dirichlet boundary conditions, diffusion tensor
A = eI and right-hand side f = 0, the [°°(H?") stability estimate is independent of e. In a second
part of this work, the pure Lagrangian scheme will be combined with Galerkin discretization using
finite elements spaces and numerical examples will be presented.

Key words. convection-diffusion equation, pure Lagrangian method, characteristics method,
stability, error estimates, second order schemes

AMS subject classifications. 65M12, 65M15, 656M25, 65M60

1. Introduction. The main goal of the present paper is to introduce and ana-
lyze a second order pure Lagrangian method for the numerical solution of convection-
diffusion problems with possibly degenerate diffusion. Computing the solutions of
these problems, especially in the convection dominated case, is an important and
challenging problem that requires development of reliable and accurate numerical
methods.

Linear convection-diffusion equations model a variety of important problems from
different fields of engineering and applied sciences, such as thermodynamics, fluid me-
chanics, and finance (see for instance [20]). In many cases the diffusive term is much
smaller than the convective one, giving rise to the so-called convection dominated
problems (see [17]). Furthermore, in some cases the diffusive term becomes degener-
ate, as in some financial models (see, for instance, [26]).

This paper concerns the numerical solution of convection-diffusion problems with
degenerate diffusion. For this kind of problems, methods of characteristics for time
discretization are extensively used (see the review paper [17]). These methods are
based on time discretization of the material time derivative and were introduced in
the beginning of the eighties of the last century combined with finite-differences or
finite elements for space discretization. When these methods are applied to the formu-
lation of the problem in Lagrangian coordinates (respectively, Eulerian coordinates)
they are called pure Lagrangian methods (respectively, semi-Lagrangian methods).
The characteristics method has been mathematically analyzed and applied to differ-
ent problems by several authors, primarily the semi-Lagrangian methods. In par-
ticular, the (classical) semi-Lagrangian method is first order accurate in time. It
has been applied to time dependent convection-diffusion equations combined with fi-
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nite elements ([16], [21]), finite differences ([16]), etc. Its adaptation to steady state
convection-diffusion equations has been developed in [§8] and, more recently, the com-
bination of the classical first order scheme with disconuous Galerkin methods has
been used to solve first-order hyperbolic equations in [3], [2] and [4]. Higher or-
der characteristics methods can be obtained by using higher order schemes for the
discretization of the material time derivative. In [22] multistep Lagrange-Galerkin
methods for convection-diffusion problems are analyzed. In [11] and [12] multistep
methods for approximating the material time derivative, combined with either mixed
finite element or spectral methods, are studied to solve incompressible Navier-Stokes
equations. Stability is proved and optimal error estimates for the fully discretized
problem are obtained. In [25] a second order characteristics method for solving con-
stant coefficient convection-diffusion equations with Dirichlet boundary conditions is
studied. The Crank-Nicholson discretization has been used to approximate the ma-
terial time derivative. For a divergence-free velocity field vanishing on the boundary
and a smooth enough solution, stability and error estimates are stated (see also [9]
and [10] for further analysis). In [15] semi-Lagrangian and pure Lagrangian meth-
ods are proposed and analyzed for convection-diffusion equation. Error estimates for
a Galerkin discretization of a pure Lagrangian formulation and for a discontinuous
Galerkin discretization of a semi-Lagrangian formulation are obtained. The estimates
are written in terms of the projections constructed in [13] and [14].

In the present paper, a pure Lagrangian formulation is used for a more general prob-
lem. Specifically, we consider a (possibly degenerate) variable coefficient diffusive term
instead of the simpler Laplacian, general mixed Dirichlet-Robin boundary conditions
and a time dependent domain. Moreover, we analyze a scheme with approximate
characteristic curves.

The mathematical formalism of continuum mechanics (see for instance [18]) is
used to introduce the schemes and to analyze the error. In most cases the exact
characteristics curves cannot be determined analytically, so our analysis include, as a
novelty with respect to [15], the case where the characteristics curves are approximated
using a second order Runge-Kutta scheme. A proof of [°°(L?) stability inequality is
developed which can be appropriately used to obtain (°°(L?) error estimates of order
O(At?) between the solutions of the time semi-discretized problem and the contin-
uous one; these estimates are uniform in the hyperbolic limit. More precisely, let
b = {¢n N and m = {¢" AN, denote, respectively, the exact solution of
the continuous problem in Lagrangian coordinates (see §3), and the discrete solution
of the pure Lagrangian method proposed and analyzed in this paper (see §4). We
prove (Corollary 4.12 and Theorem 4.27) the following inequalities:

P A P —
- J2BSVm [Ric
(1.1) H¢ A l°°<L2<ﬂ>>jL 4 H Vém,ail 12<L2<ﬂ>>+ [$m.ad 12(L2(TR))
<J 0 H °Xn ‘ o Xn. ,
N 1(H¢m’“”9+ Fo Xkl gy 1190 X0 i aqmy
and
1 = fmal /2 |BS V6 Vo ad
m m,At||1o°(L2(Q)) 4 m m,At 12(L2(9))

—

+ HS [(bm - ¢m,At]

ey = P2 AL ([[émlles (2@

HIVomllcz@r ) + IVom - ml|c2p2rry) + |dmllc2 (L2rry)



HIGHER ORDER PURE LAGRANGIAN METHOD 3
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where ¥, := ¥ o X, for a spatial field ¥, being X, the motion, B is the matrix

B= ( Ig g ) where I,,, is the ny X ny identity matrix, S[ ] = {ynt gy
for a sequence ) = {Y}N_; and Xnr = {X7, 3, is a second order Runge-Kutta
approximation of X.. The diffusion tensor has the form A = Aé” 8 and A is

a uniform lower bound for the eigenvalues of A,, . Here, J; does not depend on the
diffusion tensor and Js is bounded in the hyperbolic limit. Moreover, for the particular
case of Dirichlet boundary conditions, diffusion tensor A = eB and right-hand side
f =0, the [°°(H") stability estimate is independent of € (see Remark 4.9).

Similar stability and error estimates of order O(At?) are proved in the [°°(H?)
norm. In particular, we prove (Corollary 4.16 and Theorem 4.28) the inequalities,
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where Rat[¢)] = de} for a sequence ¢ = {¢}_,. Here, Js and J,
0

depend on the diffusion tensor; however for the particular case of diffusion tensor of
the form A = eB, J3 does not depend on it and J4 is bounded in the hyperbolic limit.

To prove these estimates we assume that the exact solution and data of the
problem are smooth, and At is sufficiently small.

The paper is organized as follows. In Section 2 the convection-diffusion Cauchy
problem is stated in a time dependent bounded domain and notations concerning
motions and functional spaces are introduced. In Section 3, the strong formulation
of the convection-diffusion Cauchy problem is written in Lagrangian coordinates and
the standard associated weak problem is obtained. In Section 4, a second order
time discretization scheme is proposed for both exact and second order approximate
characteristics. Next, under suitable hypotheses on the data, the [°°(L?) and [°°(H')
stability results are proved for small enough time step. Finally, assuming greater
regularity on the data, [°°(L?) and [°°(H") error estimates of order O(At?) for the
solution of the time discretized problem are derived. In a second part of this work
(see [7]), a fully discretized pure Lagrange-Galerkin scheme by using finite elements
in space will be analyzed and numerical results will be presented.
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2. Statement of the problem and functional spaces. Let 2 be a bounded
domain in R? (d = 2,3) with Lipschitz boundary T' divided into two parts: T' =
I'PUT® with TP NT® = (). Let T be a positive constant and X, : Q x [0,T] — R?
be a motion in the sense of Gurtin [18]. In particular, X, € C3(Q2 x [0,7]) and for
each fixed t € [0,T], X(,t) is a one-to-one function satisfying

(2.1) det F(p,t) >0 VYpeQ,
being F'(-,t) the Jacobian matrix of the deformation X.(-,t). We call Q; = X.(,1),

Iy = X.(T,t), TP = X, (TP,t) y TE = X (TE,t), for t € [0,T]. We assume that
Qo = Q. Let us introduce the trajectory of the motion

(2.2) T :={(z,t):x € Q, te (0,77},
and the set
(2.3) 0:= ]

t€[0,T]

For each ¢, X.(-,t) is a one-to-one mapping from € onto €;; hence it has an inverse
(2.4) P(-,t) : Q — Q,
such that
(2.5) X (P(z,t),t) =2, P(X.(p,t),t)=p V(z,t) €T VY(p,t) € Qx[0,T].
The mapping
P:T—Q,

so defined is called the reference map of motion X, and P € C3(T) (see [18] pp.
65 — 66). Let us recall that the spatial description of the velocity v : 7 — R? is
defined by

(2.6) v(z,t) == X, (P(x,t),t) Y(x,t)eT.

We denote by L the gradient of v with respect to the space variables.
Let us consider the following initial-boundary value problem.

(SP) STRONG PROBLEM. Find a function ¢:7T — R such that

(2.7) p(ﬂ?)%(fm) +p(@)v(z,t) - gradg(z,t) — div (A(z) grad ¢(z, 1)) = f(2,1),

for x € O and t € (0,T), subject to the boundary conditions

(2.8) ¢(-,t) = ¢p(-t) on T7,
(2.9) ag(,t) + A(-) grad ¢(-, t) - n(-, ) = g(-, ) on 1—‘5,

for t € (0,T), and the initial condition

(2.10) é(z,0) = ¢° () in Q.
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In the above equations, A : O — Sym denotes the diffusion tensor field, where
Sym is the space of symmetric tensors in the d-dimensional space, p : O — R,
f:T—R ¢:Q—R,ép(,t): TP — R and g(-,t) : TE — R, t € (0,T), are
given scalar functions, and n(-, ) is the outward unit normal vector to I'.

In the following A denotes a bounded domain in R%. Let us introduce the Lebesque
spaces L"(A) and the Sobolev spaces W™"(A) with the usual norms || - ||, 4 and
[| - |lm,r 4, respectively, for r = 1,2,..., 00 and m an integer. For the particular case
r = 2, we endow space L%(A) with the usual inner product (-,-) 4, which induces a
norm to be denoted by || - [|.4 (see [1] for details). Moreover, we denote by H}p ()
the closed subspace of H!(Q) defined by

(2.11) Hip(Q):={p € H'(Q), ¢|rp =0} .

For a Banach function space X and an integer m, space C™([0,T], X) will be abbre-
viated as C™(X) and endowed with norm

S ()
lellomesy = s { max 11690l }.

In the above definitions, ¢U) denotes the j-th derivative of ¢ with respect to time.
Finally, vector-valued function spaces will be distinguished by bold fonts, namely
L7 (A), W™ (A) and H™(A), and tensor-valued function spaces will be denoted by
L"(A), W™ (A) and H™(A). For the particular case m = 1 and r = oo, we consider
the vector-valued space W1>°(A) equipped with the following equivalent norm to the
usual one

(2.12) [1Wl1,00,4 1= max {[[wl|oo,4, | div W|lo 4, [[VWI[oo,4}

being

(2.13) IVWlloo,a = ess itGIBIIVW(x)Ilz,

where || - ||2 denotes the tensor norm subordinate to the euclidean norm in R<.

Remark 2.1. For the sake of clarity in the notation, in expressions involving
gradients and time derivatives we use the following notation (see, for instance, [18]):
1. We denote by p the material points in €, and by z the spatial points in €
with ¢ > 0.
2. A material field is a mapping with domain Q x [0, 7] and a spatial field is a
mapping with domain 7.
3. We define the material description ¥,, of a spatial field ¥ by

(2.14) T (p,t) = U(Xe(p, 1), 1).

Similar definition is used for functions, ¥, defined in a subset of 7 or of O.

4. If ¢ is a smooth material field, we denote by V¢ (respectively, by Div ¢) the
gradient (respectively, the divergence) with respect to the first argument, and by w
the partial derivative with respect to the second argument (time).

5. If ¢ is a smooth spatial field, we denote by grad (respectively, div) the
gradient (respectively, the divergence) with respect to the first argument, and by v’
the partial derivative with respect to the second argument (time).
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3. Weak formulation. We are going to develop some formal computations in
order to write a weak formulation of problem (SP) in Lagrangian coordinates p. First,
by using the chain rule, we have

(3.1) Pm(p,t) = ¢'(Xe(p,t),t) + grad p(Xe(p, ), t) - v(Xe(p, ), ).

Next, by evaluating equation (2.7) at point z = X.(p,t) and then using (3.1), we
obtain

(3.2) P (D, 1) Im (p, 1) — [div (A grad ¢)],,, (p,1) = fin(p,1),

for (p,t) € Q x (0,T). Note that in (3.2) there are derivatives with respect to the
Eulerian variable z. In order to obtain a strong formulation of problem (SP) in
Lagrangian coordinates we introduce the change of variable © = X.(p,t). By using
the chain rule we get (see [6])

. 3 - - 1
[div (Agradg)l,, = Div [~ AuF "V, det F] ———.

Then, ¢, satisfies
(3.3) Pm®m det F — Div [F'A,,F~"V¢,, det F| = f,, det F.
Throughout this article, we use the notation

Ap(p,t) = F Y (p, ) A (p, ) F T (p, t) det F(p,t) V(p,t) € Q x [0, T,
m(p,t) == |F~"(p,t)m(p)| det F(p,t) V(p,t) €T x[0,T7],

where m is the outward unit normal vector to I'. By using the chain rule and noting
that

p,t)m(p)

n(Xe(:1):1) = TooT ) D m(p)]

(p,t) €T x (0,7),

we get

. m(p)
|F=T(p,t)m(p)|’

for (p,t) € T' x (0,7) and x = X.(p,t). Thus, from (2.8)-(2.10) and (3.3), we deduce
the following pure Lagrangian formulation of the initial-boundary value problem (SP):

A(z)grad ¢(z,t) - n(z,t) = F ' (p, ) Am(p, ) F 7 (9, )V (p, 1)

(LSP) LAGRANGIAN STRONG PROBLEM. Find a function ¢, : Q x
[0,T] — R such that

(34) (P, )dm (p,t) det F(p,t) — Div | Ay (p, th)m(p,t)} = fm(p,t) det F(p, 1),
for (p,t) € Q x (0,T), subject to the boundary conditions

(3.5) Gm(p.t) = ¢p(Xe(p,t),t) on TP x (0,T),

At (p, 1) (p,t) + Am(p, )V (p,t) - m(p) = (p, t)g(Xe(p,t),t) on TF x (0,T),
(3.6)
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and the initial condition

(3.7) Pm(p, 0) = ¢°(p) in Q.

We consider the standard weak formulation associated with this pure Lagrangian
strong problem:

/Q (9, ) (0, )0 (p) det F(p, 1) dp + / A0, )V b, 1) - V() dp
(3.8) +a /FR m(p, t)pm (p, ) (p) dA, / fm(p,t)(p) det F(p,t) dp
/F . m(p,t)gm(p, )Y (p) dA,,

VY € Hip () and t € (0,T). These are formal computations, i.e., we have assumed
appropriate regularity on the involved data and solution.

4. Time discretization. In this section we introduce a second order scheme for

time semi-discretization of (3.8). We consider the general case where the diffusion
tensor depends on the space variable and can degenerate, and the velocity field is
not divergence-free. Moreover, mixed Dirichlet-Robin boundary conditions are also
allowed instead of merely Dirichlet ones.
In the first part, we propose a time semi-discretization of (3.8) assuming that the
characteristic curves are exactly computed. Next, we propose a second-order Runge-
Kutta scheme to approximate them and obtain some properties. Finally, stability and
error estimates are rigorously stated.

4.1. Second order semidiscretized scheme with exact characteristic curves.

We introduce the number of time steps, IV, the time step At = T//N, and the mesh-
points t, = nAt for n =0,1/2,1,..., N. Throughout this work, we use the notation
Y™ (y) := P(y, ty) for a function ¥(y,t).

The semi-discretization scheme we are going to study is a Crank-Nicholson-like scheme.

It arises from approximating the material time derivative at t = ¢, | 1, for 0 <n <

N —1, by a centered formula and using a second order interpolation formula involving
values at t = t,, and t = t,,41 to approximate the rest of the terms at the same time

t =t,, 1. Thus, from (3.8), we have

n+1 _an
/(p '(p) det F"**(p) + pjr, (p) det F"(p)) %,m(p)mfbm,m(p) Y(p) dp
1

1
2
" / P)+ A5 (0)) (VOu A p) + Vi a,(0)) - V() dp
/ (7" () + 7" () (917, (0) + 07, 20(0)) 0(0) A,

(det F"*1(p) fot(p) + det F™(p) f1(p)) ¥ (p) dp

4
a

+3 / ) )+ () () V(o) dA,

Remark 4.1. In Section 4.4 we will prove that the approximations involved in
scheme (4.1) are O(At?) at point (p,tn+%). Moreover, this order does not change
if we replace the exact characteristic curves and gradients F' by accurate enough
approximations.
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4.2. Second order semidiscretized scheme with approximate charac-
teristic curves. In most cases, the analytical expression for motion X, is unknown;
instead, we know the velocity field v. Let us assume that X.(p,0) = p Vp € Q. Then,
the motion X, assuming it exists, is the solution to the initial-value problem

(42) Xe(pv t) = Vm(pa t) Xe(pv O) =P

Since the characteristics X, (p,t,) cannot be exactly tracked in general, we propose
the following second order Runge-Kutta scheme to approximate X, n € {0,...,N}.
For n =0:

(4.3) XP(p)=p VpeQ,

and for 0 < n < N — 1 we define by recurrence,

(4.4) Xt (0) = Xpg(p) + AV T2 (Y™ (p)) VpeQ,
being
(45) Y7 (0) = Xpre ) + v (X ).

A similar notation to the one in §2 is used for the Jacobian tensor of X%, , namely,
and for0<n <N —1,

(A7) PR 0) = Fi(p) + A 0 0) (14 52" (X)) Fiico)

Now, we state some lemmas concerning properties of the approximate characteristics
Xy For this purpose, we require the time step to be upper bounded and the
following assumption:

Hypothesis 1. There exists a parameter § > 0, such that the velocity field v is
defined in

(4.8) 0= |J @ x {1},

te[0,T)
being
(4.9) Q) .= | B(x,9).
zeﬁt

Moreover v € CH(77).
LEMMA 4.1. Under Hypothesis 1, there exists a parameter n > 0 such that if

At < n then X (p) is defined Vp € Q and Vn € {0,...,N}, and the following
inclusion holds

Xpg(Q) cQf .
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Proof. The result can be easily proved by applying Taylor expansion to X, in the
time variable and using the regularity of v. 0
LEMMA 4.2. Under Hypothesis 1, if At <n then

(4.10) FE |l < €T UIElo 78 TCAD oy € 10, N}

Here constant C depends on v.

Proof. Inequality (4.10) follows by applying norms to (4.7), using the initial
condition (4.6) and applying the discrete Gronwall inequality. d
LEMMA 4.3. Under Hypothesis 1 if At < min{n,1/(2||L||w 75)}, then

(4.11) (FR) Hloon < eXUElc s +CAD vy e f0, ... N}
and
(412)  (FE) ™' @) = (Fig) (o) (1= ALL™ (") + O(A8) ),

being the term O(At?) depending on v and p € Q, and 0 <n < N — 1.
Proof. Firstly, we can write

(4.13) F () = Mise(0)Fiac(0),
with
@10 M) = M) (14 5 (o) )

Now, by applying norms to (4.14) we have that ||[I — M2y ||co,0 < 1. Thus, M}, (p)

is invertible for 0 < n < N — 1 and then, by induction, we deduce that Fg;gl (p) is in-

vertible too, with (Fik)~(p) = (Fite) ~(p) (Mft0)~(p). Moreover, (Mity:) ! (p) =

Dol — My (p))? so (4.12) follows. The proof of (4.11) is analogous to the one of

the previous lemma. O

The following corollaries can be easily proved (see [6] for further details).
COROLLARY 4.4. Under the assumptions of Lemma 4.2, we have

(4.15) | det Fliye|[oo.r < ¢TIVl 75 +C (M)A,
(4.16) det Fre(p) >0  if At < K,

with K depending on v and 0 < n < N. Moreover, Vp € Q0 det Fg}l (p) satisfies
(417)  det Frtl(p) = det Fly (p) (1 + Atdivv™E(Y"(p)) + O(At2)) ,

being O(At?) depending on v and 0 <n < N — 1.
COROLLARY 4.5. Under the assumptions of Lemma 4.3, we have

(4.18)det (Fji) ™ (p) = det (FJt) ™' (9) (1~ At divv™ 2 (y"(p) + O(AR) )

Vp € Q, Vn € {0,...,N — 1}, with O(At?) depending on v. Moreover, Vn €
{0,..., N}, we have

(4.19) || det (FT ) loo.a < T U147 Vil 7o +C (AL,
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LEMMA 4.6. Under Hypothesis 1 if At < min{n, 1/(2||L||sc 75), K}, where K is
the constant appearing in Corollary 4.4, then, ¥p € Q and ¥n € {0,..., N}, we have

(4.20) G < det Fype(p) < C1, G < |(Fig) " (p)ul < Ca,

being ¢; > 0, 6’; >0, j = 1,2, constants depending on v and T, and u € R? with
|lu| = 1.

Proof. The result follows from expressions (4.10), (4.11), (4.15), (4.16) and (4.19),
and by using the following equality

(4.21) 1= |ul = |(Frx)" (0)(FRi) " (p)u| YueR?, Jul=1. O

Now, we consider a motion satisfying the following assumption:
Hypothesis 2. The motion X, satisfies

Q=Q X.(pt)=p VYpeT Vte|0,T)]

Remark 4.2. Notice that, if the motion verifies Hypothesis 2 then
=T, v(z,t)=0 VxelVte|0,T]

Under Hypothesis 2, Lemma 4.1 can be improved.
LEMMA 4.7. Let us assume Hypothesis 2. If At < min{K,1/(2[|L||c,T)}, then,
X5k (p) is defined Vp € Q and Vn € {0,..., N}, and X} (Q) = Q.

Proof. See Proposition 1 in [25]. O
In order to introduce approximations to the characteristic curves and gradient tensors
in scheme (4.1), some additional assumptions are required.

Firstly, we introduce a set containing X7, (£2), for every 0 < n < N, namely

(4.22) o= |J @.

te[0,T)

Moreover, we define

(4.23) Toe= | @ x {1},
te[0,T)

being

(4.24) G = |J B(x.9).
zel'f

Hypothesis 3. Function p is defined in O° and belongs to W (0?%), being O?
the set defined in (4.22). Moreover,

(4.25) 0 <y <p(x) ae. x €O

Let us denote p1.o0 = ||p[]1,00,08-
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Hypothesis 4. The diffusion tensor, A, is defined in O° and belongs to W1:>°(0?).
Moreover, A is symmetric and has the following form:

(4.26) A= < Aé“ g )

with A, being a positive definite symmetric n; X n1 tensor (ny > 1) and © an
appropriate zero tensor. Besides, there exists a strictly positive constant, A, which is
a uniform lower bound for the eigenvalues of A4, .

Remark 4.3. Notice that the diffusion tensor can be degenerate in some applica-
tions. This is the case, for instance, in some financial models where, nevertheless, the
diffusion tensor satisfies Hypothesis 4.

Hypothesis 5. Function f is defined in 7° and it is continuous with respect to the
time variable, in space L2.

Hypothesis 6. Function g is defined in ’Z}‘SR and it is continuous with respect to
the time variable, in space H'. Besides, coefficient o in boundary condition (2.9) is
strictly positive.

Let us define the following sequences of functions of p.

Ay = (Fhig) " Ao Xpue(Fpyx) ™" det Fiy,
Mer = (FEK)me| det Frp,
for 0 < n < N. Since usually the characteristic curves cannot be exactly computed,

we replace in (4.1) the exact characteristic curves and gradient tensors by accurate
enough approximations,

% /Q (po Xk det FR + po Xpy det Fiiy) % $dp
(B ) (V03 V) T
(4.27) +% /F (M ) (Wgt + sbz,m) Y dAp
-3 / (det Fif f+ o X + det Fjyye f" 0 Xjoye) v p
+% /F (R " 0 X! + g™ 0 Xfic) v dA,.

For these computations we have made the assumptions of Lemma 4.3, and Hypothesis
3,4, 5 and 6.

Notice that we have used a lowest order characteristics approximation formula pre-
serving second order time accuracy.

Let us introduce £ 2 [¢] € (H'(Q))’ and Fai? € (H(Q))’ defined by

£hte [ (po XFK det FRE! + po XJyy det FR ) ¢ tt — ¢
< At [(b]a 1/}> = 5 N ,1/}
Q

. < (A’é}}l ;LA}%K) (v¢"+12+ Vo) | W>
Q

(Mhic + M) ("7 + ")
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2

n <’”’~"”%“9"+1 0 XK' + g™ © Xy ¢>
2 ) FR )

n det FrEt frtl o X4l 4 det F2p f 0 X2
<}- +2,¢>:< et Fre | O ARK et Fpp f" o RK71/)>
Q

for ¢ € CO(HY(Q)) and ¢ € H ().
1
Remark 4.4. Regarding the definitions of EZJQQ [¢] and Fx At only the values of
function ¢ at discrete time steps {t,}2_, are required. Thus, the above definitions

can also be stated for a sequence of functions ¢ = {¢"})_, € [H1 ()N 1.
Then the semidiscretized time scheme can be written as follows:

L9 Given ¢) A, find qﬁ/ng = {¢" AN, € [HE (Q)}N such that
(4.28) <£"+2[qﬁ] ¢> - < ”*2,¢> Vp € Hip(Q) forn=0,...,N—1.

Remark 4.5. The stability and convergence properties to be studied in the next
sections still remain valid if we replace the approximation of characteristics appearing
in scheme (4.28) by higher order ones or by the exact value.

4.3. Stability of the semidiscretized scheme. In order to prove stability
estimates for problem (4.28), the assumptions considered in the previous section are
required.

Firstly, we notice that, as a consequence of Hypothesis 4, there exists a unique positive
definite symmetric ny x n; tensor field, C,,,, such that A,, = (Cy,)?. Let us denote
by C the symmetric and positive semidefinite d x d tensor defined by

(4.29) C- ( o 9 )

Notice that A = C? and C € Wh(0°%). Let us denote by G the matrix with
coeflicients G;; = | grad Cyj|, 1 <4,j < d. At this point, let us introduce the constant

(4:30) ea=max{|GIF_ s, 12, s},
and the sequence of tensor fields
ORK _OOXRK FRK \/ dethK VNE{O }
Next, let us denote by B the d x d tensor
(I, ©
(4.31) B_<® ®>,

where I,,, is the n; x ny identity matrix. Clearly, under Hypothesis 4 we have
(4.32) A||Bw||} < (Aw,w)q Vw € R%
Let us introduce the sequence of tensor fields

By = B(Fpg) T\ /det Fie ¥n e {0,...,N}.

As far as the velocity field is defined in 7 (see Hypothesis 1), we can introduce the
following assumption:
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Hypothesis 7. The velocity field satisfies

(4.33) (I = B)L(z,t)B=0 VY(x,t)€T°.

Remark 4.6. Hypothesis 7 is equivalent to having a velocity field v whose d — n;
last components depend only on the last d — ny variables.

Remark 4.7. For any d x d tensor E of the form given in (4.26) it is easy to check
that

(EHTwy,wy) = (EHT Bw,, Bwy),

for any d x d tensor H satisfying (I — B)HB = 0, and vectors wy, wy € R%. This
equality will be used below without explicitly stated. Moreover, under Hypothesis 7,
if At <min{n,1/(2||L||c,75)} it is easy to prove that

|B(Fix) ™" (p)w| > D|Bwl,

forpeQ, weR? n=0,...,N, and D depending on v and T.

Now, it is convenient to notice that Hypothesis 4 also covers the nondegenerate case.
This hypothesis is usual in ultraparabolic equations (see, for instance, [24]), which
represent a wide class of degenerate diffusion equations arising from many applications
(see, for instance, [5]). Furthermore, as stated in [19], ultraparabolic problems either
have C'°° solutions or can be reduced to nondegenerate problems posed in a lower
spatial dimension. This is an important point, as the stability and error estimates
will be obtained under regularity assumptions on the solution.

In what follows, ¢, denotes the positive constant

4.34 p 1= 1na 00.Q5 5
(4.31) co = e VOl
where [ - [[ o os is the norm given in (2.12). Moreover, C, (respectively, J and D)

will denote a generic positive constant, related to the norm of the velocity field v
(respectively, to the rest of the data of the problem), not necessarily the same at each
occurrence.

Corresponding to the semidiscretized scheme, we have to deal with sequences of
functions 1 = {¢"}Y_,. Thus, we will consider the spaces of sequences 1°°(L?(2))
and [2(L?(Q2)) equipped with their respective usual norms:

12(L2(Q))

(35) [|7] x 0l ||

N
ALY [ 1G
n=0

Similar definitions are considered for functional spaces [°°(L?(T'f)) and 12(L%(TF))
associated with the Robin boundary condition and for vector-valued function spaces
1°(L2(£2)) and [?(L?(Q)). Moreover, let us introduce the notations

1o (L2( Q)) T 0Sntw

wn-‘,—l wn} - .
t n=0

S[) = {om" + )V Radd] = { 3

We denote by f o/X\RK and by go/)aK the following sequences of functions

v n n N N n n N
foXrx ={f OXRK}n:(Jv go Xri = {g OXRK}n:O'
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Before establishing some technical lemmas, let us recall the Young’s inequality
1 2 1o
(4.36) ab < 5 |ea +-b" ),
€

for a, b € R and € > 0, which will be extensively used in what follows.

LEMMA 4.8. Let us assume Hypotheses 1, 8 and 4. Let {(b%,At}i:[:l be the solution
of (4.28). Then, there exist a positive constant c¢(v,T,d) such that, for At < ¢, we
have

n+i n n
<£At ? [dm.atls ¢mfit + Om, At>

> = H\/poXR;g det +1¢m+gt -~ H\/poX;;K det Py ao)|
Q

(@370 || Ot (Vouthe + Voiad)|[) +3[|Ch (Vo574 + Vo)

H\/Nni}l"‘mRK( t+¢mAt)
TR
2
&y <H,/det Fg;r{l(bz;rit + ||/ aet Fgng);yAtHSJ ,
Q

where € = p1,00(cy + CyAt)/y and n € {0,...,N —1}.

HQ
2

1
Proof. First, we decompose <£Z—i2 [Pm. At (b%fit + ¢%,At> =1 + Ir + I3, with

5 < (p o Xk det Fif! + p o Xjyc det Fitye) 9r/Ar
2

n
- Ym,At 1
At 7¢n+ t+¢mAt> )
Q

= 1 (A3 + A ) (VoA + Volar)  Vouh, + Veiar), |

aQ/n N . .
IS = Z <(mRK1 + mRK) (¢m-t_it + (bm,At) ’(bm—t_it + ¢m’At>pR .
Let K be the constant appearing in Corollary 4.4. If At < K, we first have

n n n n n+1 n
| (po X7\t det FRit + po Xpp det Fryy) ¢mJ,rAt ~PmAt g1 n
1= 5 At ) ¢m,At + ¢m,At
Q

_ po X’n,+1 d tF’n,+1¢Z+l
i |V ),

Iy

1 " 2
~ AL H\/ﬂ 0 Xy det Frdn, Ay o

2

)

Q

1 n mn n
YN H\/p o Xprj det FR}1¢m,At

2
n n+1
g Voo S da e

(4.38)

where we have used Hypothesis 3. Next, we introduce the function Yi(,-) -
[tn, tn1] — Q2 , defined by Y/, (p,s) := Xy (p) — (tn — s)V" +2(Y"(p)), which
satisfies Y (0, tn) = X2y (p) and Y2y (p,tns1) = X' (p). If At is small enough,

it is easy to prove that Y3, (p,-) C Q?ﬂ. By hypothesis, p is a differentiable function,
then by Barrow’s rule and the chain rule, the following identity holds:

(4.39) p(X1k () = p(Xpi (9) — ("(p) for ae. peQ,
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where

tn+1 1
(@40) )= [ mrad oY) v Y () s for ne. p e B
tn

verifies [¢"(p)| < p1,00CvAt. Then, by using (4.17), (4.18) and (4.39) in (4.38), we get

1 n 2
T At H\/pOXI%KdetFIgK(bm,At ]

2 2
— Pl (co + CuAL) {H\/ det FRftorr L || + H,/detF]gK %AtHQ} :
Q
For I we use the fact that A = C? being C' a symmetric tensor field. We obtain,

wary 411 (A3 + i) (Vo3 + v, At) VAt Vha)

= HV po Xpi det F"“eﬁﬁfgt
(4.41) @

Q

~ 2
Lo (vondo+ Vonad)| + 1 |Gt (Voar+ Vo)
For I3 we have
(4.43) H M+ M ( Zif,it + Qz%,m)
'R
Then, by summing up (4.41), (4.42) and (4.43) we get inequality (4.37). O

LEMMA 4.9. Let us assume Hypotheses 1, 3, 4 and 7. Let {Qbm,m}fzv:l be the
solution of (4.28) and o > 0 be the constant appearing in the Robin boundary condition
(2.9). Then, there exist a positive constant ¢(v,T,d) such that, for At < ¢, we have

n+l ——— 1
<5At 2 [Pm, At ¢ZJ_FAt - Z,At>
2

2 5A; H\/ (po Xpitdet Fpfl + po X7 det Fiiy) ((sz:it - ;At)

Q
2 _ 2

HCHHV%TLHQ 2 HC}%KVQ%’N Q
(4.44)

~n+l n+1
m At

2
« ~

- = M Oy
2 H RK¢m,At‘ IR

2
y
2

FR> ’

1
Proof. First, we decompose <£ZJ£2 [Pm. At %Tit — %ym> =1, + Iy + I3, with

TR

|| B Ve a

—GALA (‘ Bt vona,

-~ ~n+1 n+1 ~n n
—cAta (H Mk P, At "’ H mRK%z,At‘

where ¢ = max {caCy /A, Cy} and n € {0,...,N — 1}.

+1
[ o X det PR & po Xy det i) A — Fse i
1= 2 At ’ Qbm At T Pm At )
Q

(At + A ) (VO57A + Vi) VOTA — Vo ar)

<(m%}1 + M) (¢Zﬁt + o, At) ¢%J,rit - nm,At>FR .

IQZ )
Q

RS

I3 =
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For I, we use Hypothesis 3 to get
2

L = 2AtH\/poX§}1detF"}l+poX dethK)(gggggt_%)m)

)

Q
(4.45)

where we have assumed that At < K, being K the constant appearing in Corollary
4.4. For I, we first have

2

clemevendl]|. - 1 || Cheveona
(4.46) ) ) ‘
+ 5 |G vardl||] - l|CaR oo,
Then we use Corollary 4.5, Hypotheses 4 and 7, and equality (4.7) to get
1~ 2 2
tllenevendl; = 7 |loo xhetrmet rvan g e m|

(4.47) )
—eaCuA || Byt venid,||
o
Moreover, since A,, is symmetric and positive definite, C,,, = /A,, is a differentiable
tensor field. Then by Barrow’s rule and the chain rule, the following identity holds,

(4.48) CO ) = C(Xpx (@) + D™(p)  for ae. peQ,
where we have denoted by D™ the d x d symmetric tensor field defined by

tnt1 L
(4.49) Dy (p) := / grad Ci; (Y (p, 5)) v 2(Y™(p))ds,
tn
being Y7} the mapping defined in the proof of Lemma 4.8. Notice that D is of the
form given in (4.29) and verifies ||D"||oo.0 < cpy/€aAt. Then, from the previous
properties, we have

n+1 n+1
O Qbm JAL Q

(4:50) 4 HCRKngmJit 01 H

Similarly, we obtain the estimate

— eaC, AL HB”“ Vortl

m,At

Q’

1 Nn n 1 N'n. T N'n. 7
(4.51) _ZHCR;?V(bm,At”?l > _Z||CRKV¢m,At||?2 — caCuAL||BR i Vi, adlld-

Thus, by introducing (4.50) and (4.51) in equality (4.46) we obtain the following
inequality:

I > % HCHHV¢Z+L H rrVOm At :
(4.52) @ @ ,
eaCust | B |~ eacuat| Bven ol

For I3 we first have

~ n+1 n+1
Qbm JAL

2 o 2
— |/ en
- 4 H RK¢m,At IR

2

(4.53)

(6]
n+1
T H Mg Doy, At

H ~n+l

(bm At
TR
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Next, by applying Corollaries 4.4, 4.5, Lemma 4.3 and equality (4.7) we obtain

Iy > o H Vm ~711%-‘1_(1¢21+it
2
re |’

(4.54) e

— Cyalt (H mg}laﬁgt
Then, by summing up (4.45), (4.52) and (4.54), inequality (4.44) follows. O
Now, in order to get error estimates we need to prove stability inequalities for more
general right-hand sides, namely for the problem,

2

~ 3 Ve,

— 0 un
+ H mRK(bm,At‘

(55) Given ¢m A find G ar = {67 A1 € [HE (2)]7 such that
<5At [qm],@ — < "*2,¢> Vi € Hip(Q) for n=0,...,N — 1,

with (a2 0) = (5™, 9)g + (G, )y
Hypothesis 8. 5 = {S"}Y_, € [L2(Q)]N and G = {G"}Y_, € [L2(DR)]Y.
LEMMA 4.10. Let us assume Hypotheses 1 and 8. Let us suppose « > 0 and

At < min{n,1/(2||L||e,7¢), K}, being n and K the constants appearing, respectively,
in Lemma 4.1 and in Corollary 4.4. Then, we have

(" + ) + (G Y + ghrr < el[STTH

2
1 n 2 ¢ .
(4.56) 3 (H\/@d’“ﬂ-ﬁ- H\/W@HXJ + FQHG )12,

~n-+1

Vo, € HY(Q), with ¢s = 1/¢1 and cg = 1/(¢1¢2), where ¢1 and ¢z are the constants
appearing in Lemma 4.6.

Proof. The estimate follows directly by applying the Cauchy-Schwarz inequality
to the left-hand side of (4.56), and using inequality (4.36) and Lemma 4.6. a

THEOREM 4.11. Let us assume Hypotheses 1, 3, 4 and 8. Let (b/m; be the solu-
tion of (4.55) subject to the initial value ¢y, n, € HLp(Q) and a > 0 be the constant

appearing in the Robin boundary condition (2.9). Then there exist two positive con-
stants J and D, which are independent of the diffusion tensor, such that if At < D

then
_— Al —
N H\/ det Fri dm At +1/ 1 HBRKS[V¢m,At]
1°°(L2(Q)) 12(L3(Q))
(4.57) VS k) Sdm.al < J (VAllom,adlle

P(L2(IR))

+1Sll2 12 + ||é||l2(L2(FR))) :

where § = {S"}N_,, G = {G"}V_,
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— . S
Proof. Sequence ¢, At = {gb%ym}ﬁ[:o satisfies <£Zt 2 [(bm,At],qﬁxfit + ¢%,At> =

< n+2 ; d)grit + oy, At>. We can use Lemma 4.8 to obtain a lower bound of this

expression, and Lemma 4.10 for ¢ = ¢"+1t and ¢ = ¢y, A, to obtain an upper bound.

By jointly considering both estimates, we get

n n n 1 n n n 2
H\/poX et PR enid)| -5 H\/poXRKdetFRKa;m_At .
1 ~n n n 2 8% n ~n
" HCRK (v%;it + V¢m,At) }Q + 3 Mgt + My (¢m At T Om At)
(4.58 rn

4c
< CSIIS"JFIII?z + —QIIG"“II%R

+H,/detFRK At||Q>

s (H det FEtomH,

where ¢ = max {1/7, 2p1,00(cv + CpAt)/v}. Let us introduce the notation

o .=

det Fppe ZAtH

2
|
Q

02 =7 Z AL\| B (Vo3 A+ Vi ar)

?n::—ZAtHvﬁﬁ?}l-i—mRK(ﬁlAt mAt)

Now, for a fixed integer ¢ > 1, let us sum (4.58) multiplied by At from n = 0 to
n = q — 1. Then, with the above notation we have

2

qg—1
(1—CAL)O, + 02 +0, < 28AL > 0} + (95 + 11811 (20 + ||G||?2(L2(PR))) ,

where we have used Hypotheses 3 and 4. In the above equation 8 denotes a positive
constant and ¢ = max {1/7,2p1,00(cy + CyAt)/v}. For At small enough, we can
apply the discrete Gronwall inequality (see, for instance, [23]) and take the maximun
in g € {1,..., N}. Then, estimate (4.57) follows. O

COROLLARY 4.12. Let us assume Hypotheses 1, 3, 4, 5 and 6. Let m be the
solution of (4.28) subject to the initial value ¢70n,At € HllD (Q). Then, there exist two
positive constants J and D, independent of the diffusion temsor and such that, for

At < D, we have
— Al —
VA H\/ det Fri ¢m, At V1 HBRKS[V¢m,At]
1°°(L2(Q)) 12(L3(Q))
< J (VAllém.adllo

(L2 (7))

(4.59)

S [MrK]

—

—|—HdetFRKfoXRK Mrirg o XrK

12(L2(9Q)) + ’ ZZ(LQ(FR))> '



HIGHER ORDER PURE LAGRANGIAN METHOD 19

Proof. The result follows directly by replacing
S™H with 1/2 (det Fptt f o Xpi! + det Ry f™ o Xge)

and G"+! with 1/2 (M g™ o Xk + M peg™ o Xy ) in (4.57). O

LEMMA 4.13. Let us assume Hypotheses 1 and 8. Let At < min{n, K}, being
n and K the constants appearing in Lemma 4.1 and in Corollary 4.4, respectively.
Then, we have

2

1™ +

)

Q

(8" =) <
(4.60)

2¢sAt 5y -

Vo, € L2(Q), where ¢y is the constant appearing in Lemma 4.10.

Proof. The result easily follows by applying the Cauchy-Schwarz inequality, in-
equality (4.36) with e = 8At/y and Lemma 4.6. O

LEMMA 4.14. Let us assume Hypotheses 1 and 8. Suppose that « > 0 and
At < min{n,1/(2||L||e.75), K}. Then, for any sequence {¢"}2_, € [L*(IF)N+1
and any q € {1,..., N}, the following inequality holds:

q—1

n " " 4c o
S(GTHL Y = gt < ;ganH%R + el + 511G
n=0
@ G"Jrl G" Ata
+§||1/)0||%R Z IRVAL ol [[Bs-
(4.61)

Proof. The result follows from the equality

qg—1

(462) Z<Gn+1,wn+1 - wn>FR = <Gq7 wq>FR - <G17wO>FR

n=0
_AtZ<Gn+l Gn7,¢ >

Indeed, the three terms on the right-hand side can be bounded by using the Cauchy-
Schwarz inequality, inequality (4.36) and Lemma 4.6. O

THEOREM 4.15. Let us assume Hypotheses 1, 3, 4, 7 and 8, and let qﬁ/ng be
the solution of (4.55) subject to the initial value ¢) A, € Hl,(). Let a > 0 be
the constant appearing in the Robin boundary condition (2.9). Then, there exist two
positive constants J(v,ca/A,T) and D(0,v,T,ca/N) such that if At < D then

'R

\/Z H\/S[det FRK]RAt[(bm,At] + ERKv¢m,At
12(L2(Q)) 1>=(L2(Q2))

2
— A
(4.63) /3| |V <J (\g 1BY6 adl,
leo(L2(T'R))

« ~ ~ —
7 ||@m,ael|pr + 1ISIle 2@ + G (2omy) + HRM[G]

l2<L2<rR>>) '
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— . +3
Proof. Sequence ¢, At = {gb%)m}ﬁ[:o satisfies <£Zt 2 [(bm,At]y(b?nTit — %ym> =
< n+2 , gbgrit — %7At> . Then, we use Lemma 4.9 and Lemma 4.13 for ¢ = gbg_rit
and © = ¢, a¢ tO Obtain, respectively, a lower and an upper bound for this expression.
By jointly considering both estimates, we get

2

n H\/ po Xkt det Fifl + po Xpyy det Fiye) (954, — 07ua0)

Q
~ - 2 a 2
! ! ~n+1 n+1
vy l|Caevaniki| ] - 5| Chvonad |, + 5 || VAR oA
T
m n 2 -~ on+1 n+1 2 Sn n 2
=5 |[Vtacdn ae)| L, < 2000 <HBRK Voniai |, + || Bhx Vo a Q)

g — n 2 205t || o
e |V« I, + 222

n+1 n+1 n
+ <G ’¢m,At - m,At>FH

2

H\/det Fi! + det Fpu (omtA, — o ac)

16At
(4.64)
with ¢ = max{caC,/A,C,}. For n =0,..., N, let us introduce the notations

Q

2

0, = 4At \/det Fotl + det Fpe ((bf;fit - fn,At) .
2 n 2 — « — " 2
=3 HBRKWWH 0= 5 ||/ S e

Now, for a fixed ¢ > 1, let us sum (4.64) from n = 0 to n = ¢ — 1. With the above
notation and by using Lemma 4.14 for ¢ = ¢, A+, we get

q—1
01 + (1 — 28A)02 + (1 — 42At)0, < 4eAt Z 07 +10cAt Y 0,
n=0 n=0

(4.65) +0 (93 + 80 + 1181 2y + NG (p2omy) + || RaelC]

2
z2<L2<rR>>> ’

where we have used Hypotheses 3 and 4. In the above equation ¢ = max {caC, /A, C,}
and 3 denotes a positive constant. For At small enough, we can apply the discrete
Gronwall inequality (see, for instance, [23]) and take the maximun in g € {1,...,N}.
Thus, estimate (4.63) follows. O

COROLLARY 4.16. Let us assume Hypotheses 1, 3, 4, 5, 6 and 7, and let gm
be the solution of (4.28) subject to the initial value ¢y, n, € Hip (). Then there exist
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two positive constants J(v,ca/A,T) and D(6,v,T,ca/A) such that if At < D then

\/Z ‘ ‘ \/ S[det FRK]RAt[QZI)m_’At] + 9 ERKV(bm,At
12(L2(Q)) 1°=(L2())
a N/\ A
—H/;H\/ mRK¢’m,At <J \/ 5 ||BV¢97%A75HQ
(4.66) fee (L2(T1))
el T e [
+\/ZH¢m=AtHFR+ et Fricf o Xrx 12(L2(Q)) MRKG S ARK 1> (L*(T'R))
Raclinrg o X .
+H at[mrr g © Xri] l2(L2(FR))>

Proof. The result follows directly by replacing
S™ with 1/2 (det Fptt f™ o Xpi! + det FRaye f™ o Xpg)

and G™! with 1/2 (Mt go Xpk! + mibgo X3y ) in (4.63). O
Remark 4.8. Notice that, constants J and D appearing in Theorem 4.15 and

Corollary 4.16 depend on the diﬁusion tensor, more precisely they depend on fraction
“4In most cases this fraction is bounded in the hyperbolic limit.

A
Remark 4.9. In the particular case of Dirichlet boundary conditions (I'P = T),

diffusion tensor of the form A = eB and f = 0, the previous corollary can be improved.
Specifically, by using analogous procedures to the ones in the previous corollary we
can obtain the following [°°(H1) stability result with constants (J and D) independent

of the diffusion constant €
\/7 ‘ ‘BRKVQ% At
12(L2()) 1> (L2(Q))

\/7H\/ detFRKRAt¢mAt
(4.67)
10+ ven S 1BV sl

for At < D.

4.4. Error estimate for the semidiscretized scheme. The aim of the present
section is to estimate the difference between the discrete solution of (4.28), (bm At =

{on, Ai}ho, and the exact solution of the continuous problem, Om = {om, . Ac-
cording to (3.8) for t,,, 1, with 0 <n < N — 1, the latter solves the problem

(4.68) (et gl ) = (FHh ) ve e Hlo(@),
where £tz [¢ ] € (HY(R)) and Frtz e (HY(Q)) are defined by
7 ._ o X" 3 n+i (4 nts
(e siimlv) =(po it aen s (6n) )
+ (A v, v¢>Q +a<m"+%¢ﬁ%,¢>w,

(FrHd ) ;=<detF"+%f"+%oX:+%,w> +<m”+%gn+%oxf+%,¢> ,
Q TR
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Vi € HY(Q).
The error estimate in the [°°(L?())-norm, to be stated in Theorem 4.27, is proved
by means of Theorem 4.11 and the forthcoming Lemmas 4.25 and 4.26. On the other
hand, the error estimate for the gradient in the [°°(L?(2))-norm, to be stated in
Theorem 4.28, is proved by means of Theorem 4.15 and the forthcoming Lemmas
4.25 and 4.26. Before doing this we give some results with sketched proofs (see [6] for
further details). Some auxiliary mappings will be introduced. They will be denoted
by &, u and ¥ depending on whether they are scalar, vector or tensor mappings,
respectively. Moreover, if v is smooth enough, it is easy to prove that F, F~1,
det I and their partial derivatives, as well as the ones of (Fp;)~! and det F, can
be bounded by constants depending only on v and T'. These estimates and the ones
obtained in §4.2 for FJt,, (FR, )~ ! and det F, will be used below without explicitly
stated (see [6] for further details).

LEMMA 4.17. Let us assume Hypotheses 1 and 3. Let us suppose that v €
CYT?), X, € C*HQ x [0,T]), At < n, p € C3(L*(Q)) and pm € C*(L>®(Q)). Let us
define the function §”+% :Q— R, forne{0,...,N—1}, by

€773 (p) i= po X072 (p) det F™+5 (p)" 3 (p)

1 n 0 n n ") — " (p

+ (0o XE () det Fyi? (p) + p© Xpaep) det Fiie ) &2 2)
for a.e. p e Q. Then €2 € L2(Q) and ||€"F2||q < C(T,v, p) At?|ollcs(r2()
n=0,...,N—1.

Proof. The result follows by using Taylor expansions and noting that if X, €
C3(Q x [0,T]) and v € CY(T?) then |X2(p) — X2y (p)| < C(v,T)At?, and if X, €
C*(Q2 x [0,7T]) and v € C*(7?) then |det F"(p) — det F&, (p)| < C(v,T)At2. O

LEMMA 4.18. Let us assume that A,, € C*(L>®(Q)). Let w € C*(L*(Q)) be a
given mapping and u"z : Q@ — R?, for n € {0,...,N — 1}, be defined by

At (p) + Emp)) (wnﬂ (p) +w" <p>>

W (p) = A (p)w (p) - ( 2 2
for a.e. p € Q. Then, "2 € L2(Q) and |[u™2||q < C(T,v, A)AL?||w||c212(0))
n €{0,...,N —1}. Moreover, if X, € C*(Q x [0,T)), Ay, € C2(WH>°(Q)) and w €
C?(H'(Q)) then u"+3 € HY(Q) and || Divu™*3|lq < C(T,v, A)AL||W||c2(m1(0))
ne{0,...,N—1}.

Proof. The result follows by writing Taylor expansions in the time variable for w
and the tensor field A,,(p, s) := det F(p, s)F~1(p,s)Ao Xc(p,s)F~T(p,s), s € [0,7).
d

LEMMA 4.19. Let us assume Hypotheses 1 and 4. Let us suppose that v €
C%(T%), X, € C*Q x [0,T]) and At < min{n,1/(2||L||s0 75)}, being n the constant
appearing in Lemma 4.1. Let w € L2(Q) be a given function and u™ : Q — R? be
defined by

(4.69) u"(p) := A7, (p)w(p) — A (p)w(p), 0 <n < N.

Then, u" € L2(Q) and |[u"||lq < C(T, v, A)At?||w||lq. Moreover, if v € C3(T?),
X, € C°(Q x [0,T]), A € W>°(0?%) and w € H'(Q), then u" € H'(Q) and
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|| Divu”||q < C(T,v, A)At?||w||1,2,0-

Proof. The result follows by applying Taylor expansions, noting that if X, €
C*(Q x [0,T]) and v € C%(T?) then || X — XBx|l1,000 < O(v,T)AL?, ||(F™)~T —
(FR) oo < C(v, T)At? and ||det F™ — det FRy|looo < C(v,T)At?, and if
X, € C*(Q x[0,T]) and v € C3(7?) then ||[(F")™T — (F2x) T||l1,00.0 < C(v,T)At?
and || det F™" — det Fj|l1,00,0 < C(v, T)At% O

LEMMA 4.20. Let ¢ € C?*(L*(TF)) be a given mapping and §f+% TR — R,
1
;H_Q : TR — R be defined by

1 1 1 TAan 1 TAan n+1 n+1
VTR (p) = mtE (p) "R (p) — < i (p); (p)> <(p . (p);rsp . (p)),

3 () 1 i () () — (m"“(p)cp"“(p; + ﬁ%"(ﬁ)@"(}?)) .

Then {?Jr%, §;+% € L3(T'E) and

nJrl At2 ~
167 " lIrr < THm@HCQ(L%FR)) < C(T,v)A @l 2 (2 rmy),

n4
1€, 2 lrr < C(T, V)AL @llc2 (12 (rm))-

Proof. The result follows by using Taylor expansions in the time variable. d

LEMMA 4.21. Let us assume Hypothesis 1. Let us suppose that v € C?(T?),
X, € C*(2x[0,T]) and At < min{n,1/(2||L||« 75)}, being n the constant appearing
in Lemma 4.1. Let p € L*(T'%) be a given function and £" : T® — R be defined by

(4.70) §"(p) == m"(p)p(p) — Mpx(p)p(p), 0 <n < N.

Then §" € L*(I'F) and ||€"[lpr < C(T,v)At?[|g]|pn.

Proof. The result follows noting that |det F™(p) — det F (p)] < C(v,T)At?
and [|(F™)""(p) — (FR) " (p)||, < C(v,T)A. 0

LEMMA 4.22. Let us assume Hypotheses 1. Let us suppose v € C?(T%), X, €
C*(Q x [0,7T)) and At < min{n,1/(2||L||w.75)}, being n the constant appearing in
Lemma 4.1. Let o € HY(G? ) be a given function, being G¢ the set defined in (4.24),
and let €7 : T — R be defined by

(4.71) §"(p) == m"(p)p(X:'(p)) — Mk (P)P(XRK (), 0 <n < N.

Then & € L*(I'F) and [|€"||rr < C(T,v)AL||@l]1 565 -

Proof. The result follows by applying Taylor expansions, noting that | X2 (p) —
Xix )l < C(v, )AL, |(F*)~"(p) — (Fg) " (p)] < C(v,T)At* and | det F"(p) —
det Fiie (p)| < C(v,T)AL?. a

LEMMA 4.23. Let ¢ € C2(L3(Q)) be a given function and €72 : Q@ — R, for
n€{0,...,N — 1}, be defined by

_ det Frri(p)enti(p) + det F™(p)p™(p) .

€45 (p) i= det F" % (p)p" 3 (p) 5
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Then, £"t2 € L2(Q) and

Proof. The result follows by applying Taylor expansions. 0

LEMMA 4.24. Let us assume Hypothesis 1. Let us suppose that v € C?(T?),
X, € CHQ x [0,T)) and At < n, being 1 the constant appearing in Lemma 4.1.
Let ¢ € H' (X ) be a given function, being QO the set defined in (4.9), and let
£ Q — R be defined by

" (p) == det I (p)p(X (p)) — det Fr (p)p(Xrk (P), 0 <n < N.

Then &" € L*(Q) and [|€"[|o < C(T,v)At?||oll 2 05 -

1 At?
§z|| < g lldet Felloarag) < C(T, V)AL pllo2 (22 (9)-

Proof. The result follows by using Taylor expansions, noting that | X (p) —
X7 (p)] < C(v,T)At? and | det F™(p) — det Fry(p)| < C(v, T)At%. O

LEMMA 4.25. Assume Hypotheses 1, 8 and 4 hold. Moreover, suppose that
X, € C°(Q x [0,T)) and that the coefficients of problem (2.7)-(2.10) satisfy,

veCHT?), pmecC*HL®Q), AcW2®(0), A,ecC*(W->(Q)).
Let the solution of (4.68) satisfy,
¢m € CYLA(Q)), Vom € C*(HY (),  ¢mlrr € C*(LXTT)).

Finally, assume that At < min{n,1/(2||L||s 75)}. Then, for each 0 < n < N —1,

1 1
there exist two functions {Zgz : Q1 — R and 52:2 : TR — R, such that

n+d _ pntg 7 [ nti n+i
) (e i) Galv) = (i) (et e)
Vi € Hip (). Moreover, §Z$% € L*(Q), {Z:% € L%(T'E) and the following estimates

hold:
nt
e

nt3
e

< APC(T,v,p, A) (l|omllesr2)) + [Vomllcz@@)) »
(4.73) o

where o > 0 appears in (2.9).

o S ALC(T, v, A) (Vb - ml|c2(r2(0my) + ol [dmllc2 12 0my))

Proof. The left-hand side of (4.72) is equal to I; + I + I3, with
1 . o\n+i
n = <po XUTE det 3 (6n) ,w>
Q

1 XnJrl d FnJrl X" det F? ¢nm+1 - ¢nm
§(po ri det B +po Xpp det RK)iAt 0 o’

bt (A’é}}l +A%K> (wzfrl +V¢:;> ,vw>

(
- ; 2

A
~n+1 ~n n+1 n
TR

Q

2 2
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The bound for I; directly follows from Lema 4.17 for ¢ = ¢,,, so we can define a
1
function §Z+2 € L?(Q2) such that

(474) I = <§Z+%,¢>Q, with Hg?f%

s C(T,v, p) AL |||l c3(12(0))-

In order to estimate I we apply Lemmas 4.18 and 4.19 for w = V¢, and w =

1 1

Vol + Ver | respectively, so I, = <u7;2+2,V1/)> , with u?jz € HY(Q). Then, by
Q

using a Green’s formula, we deduce

1 ntl
I, = <u7;;r2 -m,1/)> - <Divu12+2,1/1>9,

IR

where, the involved functions are bounded as follows:
n+%

(4.75) } o 'mHF

. nJrl
HDIVUI 2
2

B < C(T,V,A)AtQHV(bm ! m||C2(L2(FR))7

o S C(T, v, A)At2||v¢m||cz(H1(Q)).

The estimate for I3 follows by applying Lemmas 4.20 and 4.21 for ¢ = a¢.,|pr and

o = a(pB + ¢ )|pr, respectively:
n+i

€,

(476) I3 = <§I3+2,’¢>FR with ‘ < C(T, V)OéAt2||(bm||cz(L2(pR)).

'R

Finally, partial results (4.74), (4.75) and (4.76) imply (4.72). O
LEMMA 4.26. Assume Hypothesis 1, and v € C2(79%), X, € C*Q x [0,T))

and At < min{n,1/(2||L||s.75)}, being n the constant appearing in Lemma 4.1. Let
fm € C3(LA(Y), f € CHT°), gm € C*(L*(TR)), g € CY(TP:). Then, for each

n € {0,...,N — 1}, there exist §?+% Q0 — R and f;ﬁé ;TR — R, satisfying
)= (g 6 e

@) (P —ra) ) = (6 w) (G ) e HI(Q).

Moreover, §?+% € L*(Q) and &, € L*(T'!) and the following estimates hold:
n+%

ks

n—i—%
9

< APC(T,v,T°) (|| det F finlle 2 + I fllerzs))
(4.78) o

Proof. The proof follows from Lemmas 4.20, 4.22, 4.23 and 4.24. d

o SALCE VT (gl leaqran) + lgllerrs, ) -

Hypothesis 9. Functions appearing in problem (2.7)-(2.10) satisfy:

e pm € C2(L®(Q)), A € W2>(0?), A, € CEH(WL>(Q)),

e veC¥TY,

o fm € C2(L2(), f € CHT?), gm € C*(L*(T'R)), g € C*(T2:) and o > 0.
Hypothesis 10. Functions appearing in problem (2.7)-(2.10) satisfy:

e pm € C2(L™(Q)), A € W22(0?), A, € C3(WL>(Q)),

o veC3TY),

o fm € C3(LA()), f € CHT?), gm € C3(LA(T'R)), g € C*(T %) and a > 0.



26 M. BENITEZ AND A. BERMUDEZ

Lemmas in this section hold under Hypotheses 1, 3 and 4 and the previous ones.
THEOREM 4.27. Assume Hypotheses 1, 3, 4, 5, 6, 7 and 9, and X, € C?(Q x
[0,T7). Let
Om € C°(L*(Q)), Von € C2(H'(Q),  ¢ulrr € C*(LX(TT)),

be the solution of (4.68) and let qﬁ/ng be the solution of (4.28) subject to the initial
value ¢m Ay =80, = ¢° € HY(Q). Then, there exist two positive constants J and D,
the latter being independent of the diffusion tensor, such that, if At < D we have

VAN det FRK — Gm,ae)| |1 (L2(02))
“/Z HERKS [V — Voém,ail
< J A (|lomlles )

- (bm,At]
12(L%(TR))
HIVomllez@r ) + IVom - ml|c2p2rry) + | dmllc2L2ry)

12(L2(2)
(4.79)

S [Mmek]

[ det Ffmllc22)) + 1 fllcrs) + [IMmgmll 22 rry) + ||9||01(TI§R)) -

Proof. We denote by @ the difference between the continuous and the discrete
solution, that is, €y, s = { o0, — %>At}:’:0' Then, by using (4.28) and (4.68) we have

(4.80) (a1 Eman v) = (LA = £73) Bulv) + (F73 = 742 0),

Vi € H%D () and 0 <n < N — 1. Then, as a consequence of Lemmas 4.25 and 4.26,
we deduce

n+ _— n+ n+l n+ n+

(8)  (LartEmalv) = (g —ithe) (& -he)
Vi € H, (Q) Now the result follows by applying Theorem 4.11 to (4.81), noting
that €2 a¢ = 0 and using the upper bounds for £z, {f, {£, and £, given in Lemmas
4.25 and 4.26. d

Remark 4.10. Notice that constant J appearing in the previous theorem is
bounded in the limit when the diffusion tensor vanishes. In particular, Theorem
4.27 is also valid when A = 0.

'THEOREM 4.28. Let us assume Hypotheses 1, 3, 4, 5, 6, 7 and 10, and X. €
C5(Q x [0,T]). Let ¢, with

Om € C*(L*(Q)),  Vom € CO(HI(Q)),  dmlra € C*(L*(TT)),

be the solution of (4.68) and gm be the solution of (4.28) subject to the initial value
(b?n,At = ¢0 = ¢° € HY(Q). Then, there exist two positive constants J and D such
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that, for At < D we have

\/Z ’ ’ /STt Frn Rt b — dmad]
/2 B (Vo = V0

< J A ([[¢mlles (2@
1°°(L2(T'R))

2(L2(Q)

1> (L2(2))

4.82
(482) 2 MERK (Pm — dm,AtL)

Wi

HIVomlloz@r @) + [IVom - mllos2rry) + [|dmlleszrry)
+ldet Ffmllcz2 2y + 1 fllcrs) + [Imgmllcs 2 rry) + ||g||C2(le‘R)) :

Proof. 1t is analogous to the one of the previous theorem, but using Theorem 4.15
instead of Theorem 4.11 and noting that

HREK\LF] + H atlég] < CA#? (||v¢m 1| a2 rmy)

(L2 (01)) 2(L2(IR)
+lbmllszawny + 1Tgmllcs zomy + lollezzs,) ) -

This estimate follows by using Taylor expansions and

(X2 (p) = X5k () — (X2 (p) XRK p)| <CA
[(EH 7 ) = (FREH @) = (P 7 0) — (FRe) ™ (0)] < CA
|(det F" (p) — det Fr (p)) — (det F™(p) — det Fpx(p))| < CA 0

Remark 4.11. In the particular case of diffusion tensor of the form A = eB with
€ > 0, constants J and D appearing in the previous theorem are bounded as ¢ — 0.

Remark 4.12. Notice that, from the obtained estimates and by using a change
of variable, we can deduce similar ones in Eulerian coordinates (see [6] for further
details).

5. Conclusions. We have performed the numerical analysis of a second-order
pure Lagrangian method for convection-diffusion equations with degenerate diffusion
tensor and non-divergence-free velocity fields. Moreover, we have considered general
Dirichlet-Robin boundary conditions. The method has been introduced and analyzed
by using the formalism of continuum mechanics. Although our analysis considers any
velocity field and use approximate characteristic curves, second order error estimates
have been obtained when smooth enough data and solutions are available. In the
second part of this paper ([7]), we analyze a fully discretized pure Lagrange-Galerkin
scheme and present numerical examples showing the predicted behavior (see also [6]).
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