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MARTA BENÍTEZ† AND ALFREDO BERMÚDEZ†
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1. Introduction. The main goal of the present paper is to introduce and ana-
lyze a second order pure Lagrangian method for the numerical solution of convection-
diffusion problems with possibly degenerate diffusion. Computing the solutions of
these problems, especially in the convection dominated case, is an important and
challenging problem that requires development of reliable and accurate numerical
methods.

Linear convection-diffusion equations model a variety of important problems from
different fields of engineering and applied sciences, such as thermodynamics, fluid me-
chanics, and finance (see for instance [20]). In many cases the diffusive term is much
smaller than the convective one, giving rise to the so-called convection dominated
problems (see [17]). Furthermore, in some cases the diffusive term becomes degener-
ate, as in some financial models (see, for instance, [26]).

This paper concerns the numerical solution of convection-diffusion problems with
degenerate diffusion. For this kind of problems, methods of characteristics for time
discretization are extensively used (see the review paper [17]). These methods are
based on time discretization of the material time derivative and were introduced in
the beginning of the eighties of the last century combined with finite-differences or
finite elements for space discretization. When these methods are applied to the formu-
lation of the problem in Lagrangian coordinates (respectively, Eulerian coordinates)
they are called pure Lagrangian methods (respectively, semi-Lagrangian methods).
The characteristics method has been mathematically analyzed and applied to differ-
ent problems by several authors, primarily the semi-Lagrangian methods. In par-
ticular, the (classical) semi-Lagrangian method is first order accurate in time. It
has been applied to time dependent convection-diffusion equations combined with fi-
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nite elements ([16], [21]), finite differences ([16]), etc. Its adaptation to steady state
convection-diffusion equations has been developed in [8] and, more recently, the com-
bination of the classical first order scheme with disconuous Galerkin methods has
been used to solve first-order hyperbolic equations in [3], [2] and [4]. Higher or-
der characteristics methods can be obtained by using higher order schemes for the
discretization of the material time derivative. In [22] multistep Lagrange-Galerkin
methods for convection-diffusion problems are analyzed. In [11] and [12] multistep
methods for approximating the material time derivative, combined with either mixed
finite element or spectral methods, are studied to solve incompressible Navier-Stokes
equations. Stability is proved and optimal error estimates for the fully discretized
problem are obtained. In [25] a second order characteristics method for solving con-
stant coefficient convection-diffusion equations with Dirichlet boundary conditions is
studied. The Crank-Nicholson discretization has been used to approximate the ma-
terial time derivative. For a divergence-free velocity field vanishing on the boundary
and a smooth enough solution, stability and error estimates are stated (see also [9]
and [10] for further analysis). In [15] semi-Lagrangian and pure Lagrangian meth-
ods are proposed and analyzed for convection-diffusion equation. Error estimates for
a Galerkin discretization of a pure Lagrangian formulation and for a discontinuous
Galerkin discretization of a semi-Lagrangian formulation are obtained. The estimates
are written in terms of the projections constructed in [13] and [14].
In the present paper, a pure Lagrangian formulation is used for a more general prob-
lem. Specifically, we consider a (possibly degenerate) variable coefficient diffusive term
instead of the simpler Laplacian, general mixed Dirichlet-Robin boundary conditions
and a time dependent domain. Moreover, we analyze a scheme with approximate
characteristic curves.

The mathematical formalism of continuum mechanics (see for instance [18]) is
used to introduce the schemes and to analyze the error. In most cases the exact
characteristics curves cannot be determined analytically, so our analysis include, as a
novelty with respect to [15], the case where the characteristics curves are approximated
using a second order Runge-Kutta scheme. A proof of l∞(L2) stability inequality is
developed which can be appropriately used to obtain l∞(L2) error estimates of order
O(∆t2) between the solutions of the time semi-discretized problem and the contin-
uous one; these estimates are uniform in the hyperbolic limit. More precisely, let

φ̂m = {φn
m}N

n=0 and φ̂m,∆t = {φn
m,∆t}N

n=0 denote, respectively, the exact solution of
the continuous problem in Lagrangian coordinates (see §3), and the discrete solution
of the pure Lagrangian method proposed and analyzed in this paper (see §4). We
prove (Corollary 4.12 and Theorem 4.27) the following inequalities:
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+||fm||C2(L2(Ω)) + ||f ||C1(T δ) + ||gm||C2(L2(ΓR)) + ||g||C1(T δ

ΓR
)

)
,

where Ψm := Ψ ◦ Xe for a spatial field Ψ, being Xe the motion, B is the matrix

B =

(
In1

Θ
Θ Θ

)
, where In1

is the n1×n1 identity matrix, Ŝ[ψ] := {ψn+1 +ψn}N−1
n=0

for a sequence ψ̂ = {ψ}N
n=0 and X̂RK = {Xn

RK}N
n=0 is a second order Runge-Kutta

approximation of Xe. The diffusion tensor has the form A =

(
An1

Θ
Θ Θ

)
and Λ is

a uniform lower bound for the eigenvalues of An1
. Here, J1 does not depend on the

diffusion tensor and J2 is bounded in the hyperbolic limit. Moreover, for the particular
case of Dirichlet boundary conditions, diffusion tensor A = ǫB and right-hand side
f = 0, the l∞(H1) stability estimate is independent of ǫ (see Remark 4.9).

Similar stability and error estimates of order O(∆t2) are proved in the l∞(H1)
norm. In particular, we prove (Corollary 4.16 and Theorem 4.28) the inequalities,
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where R̂∆t[ψ] :=

{
ψn+1 − ψn

∆t

}N−1

n=0

for a sequence ψ̂ = {ψ}N
n=0. Here, J3 and J4

depend on the diffusion tensor; however for the particular case of diffusion tensor of
the form A = ǫB, J3 does not depend on it and J4 is bounded in the hyperbolic limit.

To prove these estimates we assume that the exact solution and data of the
problem are smooth, and ∆t is sufficiently small.

The paper is organized as follows. In Section 2 the convection-diffusion Cauchy
problem is stated in a time dependent bounded domain and notations concerning
motions and functional spaces are introduced. In Section 3, the strong formulation
of the convection-diffusion Cauchy problem is written in Lagrangian coordinates and
the standard associated weak problem is obtained. In Section 4, a second order
time discretization scheme is proposed for both exact and second order approximate
characteristics. Next, under suitable hypotheses on the data, the l∞(L2) and l∞(H1)
stability results are proved for small enough time step. Finally, assuming greater
regularity on the data, l∞(L2) and l∞(H1) error estimates of order O(∆t2) for the
solution of the time discretized problem are derived. In a second part of this work
(see [7]), a fully discretized pure Lagrange-Galerkin scheme by using finite elements
in space will be analyzed and numerical results will be presented.
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2. Statement of the problem and functional spaces. Let Ω be a bounded
domain in Rd (d = 2, 3) with Lipschitz boundary Γ divided into two parts: Γ =
ΓD ∪ ΓR, with ΓD ∩ ΓR = ∅. Let T be a positive constant and Xe : Ω× [0, T ] −→ Rd

be a motion in the sense of Gurtin [18]. In particular, Xe ∈ C3(Ω × [0, T ]) and for
each fixed t ∈ [0, T ], Xe(·, t) is a one-to-one function satisfying

detF (p, t) > 0 ∀p ∈ Ω,(2.1)

being F (·, t) the Jacobian matrix of the deformation Xe(·, t). We call Ωt = Xe(Ω, t),
Γt = Xe(Γ, t), ΓD

t = Xe(Γ
D, t) y ΓR

t = Xe(Γ
R, t), for t ∈ [0, T ]. We assume that

Ω0 = Ω. Let us introduce the trajectory of the motion

T := {(x, t) : x ∈ Ωt, t ∈ [0, T ]},(2.2)

and the set

O :=
⋃

t∈[0,T ]

Ωt.(2.3)

For each t, Xe(·, t) is a one-to-one mapping from Ω onto Ωt; hence it has an inverse

P (·, t) : Ωt −→ Ω,(2.4)

such that

Xe(P (x, t), t) = x, P (Xe(p, t), t) = p ∀(x, t) ∈ T ∀(p, t) ∈ Ω × [0, T ].(2.5)

The mapping

P : T −→ Ω,

so defined is called the reference map of motion Xe and P ∈ C3(T ) (see [18] pp.
65 − 66). Let us recall that the spatial description of the velocity v : T −→ Rd is
defined by

v(x, t) := Ẋe(P (x, t), t) ∀(x, t) ∈ T .(2.6)

We denote by L the gradient of v with respect to the space variables.
Let us consider the following initial-boundary value problem.

(SP) STRONG PROBLEM. Find a function φ : T −→ R such that

ρ(x)
∂φ

∂t
(x, t) + ρ(x)v(x, t) · gradφ(x, t) − div (A(x) gradφ(x, t)) = f(x, t),(2.7)

for x ∈ Ωt and t ∈ (0, T ), subject to the boundary conditions

φ(·, t) = φD(·, t) on ΓD
t ,(2.8)

αφ(·, t) +A(·) gradφ(·, t) · n(·, t) = g(·, t) on ΓR
t ,(2.9)

for t ∈ (0, T ), and the initial condition

φ(x, 0) = φ0(x) in Ω.(2.10)
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In the above equations, A : O −→ Sym denotes the diffusion tensor field, where
Sym is the space of symmetric tensors in the d-dimensional space, ρ : O −→ R,
f : T −→ R, φ0 : Ω −→ R, φD(·, t) : ΓD

t −→ R and g(·, t) : ΓR
t −→ R, t ∈ (0, T ), are

given scalar functions, and n(·, t) is the outward unit normal vector to Γt.
In the following A denotes a bounded domain in Rd. Let us introduce the Lebesque
spaces Lr(A) and the Sobolev spaces Wm,r(A) with the usual norms || · ||r,A and
|| · ||m,r,A, respectively, for r = 1, 2, . . . ,∞ and m an integer. For the particular case
r = 2, we endow space L2(A) with the usual inner product 〈·, ·〉A, which induces a
norm to be denoted by || · ||A (see [1] for details). Moreover, we denote by H1

ΓD(Ω)
the closed subspace of H1(Ω) defined by

H1
ΓD (Ω) :=

{
ϕ ∈ H1(Ω), ϕ|ΓD ≡ 0

}
.(2.11)

For a Banach function space X and an integer m, space Cm([0, T ], X) will be abbre-
viated as Cm(X) and endowed with norm

||ϕ||Cm(X) := max
t∈[0,T ]

{
max

j=0,...,m
||ϕ(j)(t)||X

}
.

In the above definitions, ϕ(j) denotes the j-th derivative of ϕ with respect to time.
Finally, vector-valued function spaces will be distinguished by bold fonts, namely
Lr(A), Wm,r(A) and Hm(A), and tensor-valued function spaces will be denoted by
Lr(A), Wm,r(A) and Hm(A). For the particular case m = 1 and r = ∞, we consider
the vector-valued space W1,∞(A) equipped with the following equivalent norm to the
usual one

||w||1,∞,A := max {||w||∞,A, || div w||∞,A, ||∇w||∞,A} ,(2.12)

being

||∇w||∞,A := ess sup
x∈A

||∇w(x)||2,(2.13)

where || · ||2 denotes the tensor norm subordinate to the euclidean norm in Rd.
Remark 2.1. For the sake of clarity in the notation, in expressions involving

gradients and time derivatives we use the following notation (see, for instance, [18]):
1. We denote by p the material points in Ω, and by x the spatial points in Ωt

with t > 0.
2. A material field is a mapping with domain Ω × [0, T ] and a spatial field is a

mapping with domain T .
3. We define the material description Ψm of a spatial field Ψ by

Ψm(p, t) = Ψ(Xe(p, t), t).(2.14)

Similar definition is used for functions, Ψ, defined in a subset of T or of O.
4. If ϕ is a smooth material field, we denote by ∇ϕ (respectively, by Divϕ) the

gradient (respectively, the divergence) with respect to the first argument, and by ψ̇
the partial derivative with respect to the second argument (time).

5. If ψ is a smooth spatial field, we denote by gradψ (respectively, divψ) the
gradient (respectively, the divergence) with respect to the first argument, and by ψ′

the partial derivative with respect to the second argument (time).
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3. Weak formulation. We are going to develop some formal computations in
order to write a weak formulation of problem (SP) in Lagrangian coordinates p. First,
by using the chain rule, we have

φ̇m(p, t) = φ′(Xe(p, t), t) + gradφ(Xe(p, t), t) · v(Xe(p, t), t).(3.1)

Next, by evaluating equation (2.7) at point x = Xe(p, t) and then using (3.1), we
obtain

ρm(p, t)φ̇m(p, t) − [ div (A gradφ)]m (p, t) = fm(p, t),(3.2)

for (p, t) ∈ Ω × (0, T ). Note that in (3.2) there are derivatives with respect to the
Eulerian variable x. In order to obtain a strong formulation of problem (SP) in
Lagrangian coordinates we introduce the change of variable x = Xe(p, t). By using
the chain rule we get (see [6])

[ div (A gradφ)]m = Div
[
F−1AmF

−T∇φm detF
] 1

detF
.

Then, φm satisfies

ρmφ̇m detF − Div
[
F−1AmF

−T∇φm detF
]

= fm detF.(3.3)

Throughout this article, we use the notation

Ãm(p, t) := F−1(p, t)Am(p, t)F−T (p, t) detF (p, t) ∀(p, t) ∈ Ω × [0, T ],

m̃(p, t) := |F−T (p, t)m(p)| detF (p, t) ∀(p, t) ∈ Γ × [0, T ],

where m is the outward unit normal vector to Γ. By using the chain rule and noting
that

n(Xe(p, t), t) =
F−T (p, t)m(p)

|F−T (p, t)m(p)| (p, t) ∈ Γ × (0, T ),

we get

A(x) gradφ(x, t) · n(x, t) = F−1(p, t)Am(p, t)F−T (p, t)∇φm(p, t) · m(p)

|F−T (p, t)m(p)| ,

for (p, t) ∈ Γ × (0, T ) and x = Xe(p, t). Thus, from (2.8)-(2.10) and (3.3), we deduce
the following pure Lagrangian formulation of the initial-boundary value problem (SP):

(LSP) LAGRANGIAN STRONG PROBLEM. Find a function φm : Ω ×
[0, T ] −→ R such that

ρm(p, t)φ̇m(p, t) detF (p, t) − Div
[
Ãm(p, t)∇φm(p, t)

]
= fm(p, t) detF (p, t),(3.4)

for (p, t) ∈ Ω × (0, T ), subject to the boundary conditions

φm(p, t) = φD(Xe(p, t), t) on ΓD × (0, T ),(3.5)

αm̃(p, t)φm(p, t) + Ãm(p, t)∇φm(p, t) ·m(p) = m̃(p, t)g(Xe(p, t), t) on ΓR × (0, T ),

(3.6)
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and the initial condition

φm(p, 0) = φ0(p) in Ω.(3.7)

We consider the standard weak formulation associated with this pure Lagrangian
strong problem:

∫

Ω

ρm(p, t)φ̇m(p, t)ψ(p) detF (p, t) dp+

∫

Ω

Ãm(p, t)∇φm(p, t) · ∇ψ(p) dp

+α

∫

ΓR

m̃(p, t)φm(p, t)ψ(p) dAp =

∫

Ω

fm(p, t)ψ(p) detF (p, t) dp

+

∫

ΓR

m̃(p, t)gm(p, t)ψ(p) dAp,

(3.8)

∀ψ ∈ H1
ΓD (Ω) and t ∈ (0, T ). These are formal computations, i.e., we have assumed

appropriate regularity on the involved data and solution.

4. Time discretization. In this section we introduce a second order scheme for
time semi-discretization of (3.8). We consider the general case where the diffusion
tensor depends on the space variable and can degenerate, and the velocity field is
not divergence-free. Moreover, mixed Dirichlet-Robin boundary conditions are also
allowed instead of merely Dirichlet ones.
In the first part, we propose a time semi-discretization of (3.8) assuming that the
characteristic curves are exactly computed. Next, we propose a second-order Runge-
Kutta scheme to approximate them and obtain some properties. Finally, stability and
error estimates are rigorously stated.

4.1. Second order semidiscretized scheme with exact characteristic curves.

We introduce the number of time steps, N , the time step ∆t = T/N , and the mesh-
points tn = n∆t for n = 0, 1/2, 1, . . . , N . Throughout this work, we use the notation
ψn(y) := ψ(y, tn) for a function ψ(y, t).
The semi-discretization scheme we are going to study is a Crank-Nicholson-like scheme.
It arises from approximating the material time derivative at t = tn+ 1

2
, for 0 ≤ n ≤

N−1, by a centered formula and using a second order interpolation formula involving
values at t = tn and t = tn+1 to approximate the rest of the terms at the same time
t = tn+ 1

2
. Thus, from (3.8), we have

1

2

∫

Ω

(
ρn+1

m (p) detFn+1(p) + ρn
m(p) detFn(p)

) φn+1
m,△t(p) − φn

m,△t(p)

∆t
ψ(p) dp

+
1

4

∫

Ω

(
Ãn+1

m (p) + Ãn
m(p)

)(
∇φn+1

m,△t(p) + ∇φn
m,△t(p)

)
· ∇ψ(p) dp

+
α

4

∫

ΓR

(
m̃n+1(p) + m̃n(p)

) (
φn+1

m,△t(p) + φn
m,△t(p)

)
ψ(p) dAp

=
1

2

∫

Ω

(
detFn+1(p)fn+1

m (p) + detFn(p)fn
m(p)

)
ψ(p) dp

+
1

2

∫

ΓR

(
m̃n+1(p)gn+1

m (p) + m̃n(p)gn
m(p)

)
ψ(p) dAp.

(4.1)

Remark 4.1. In Section 4.4 we will prove that the approximations involved in
scheme (4.1) are O(∆t2) at point (p, tn+ 1

2
). Moreover, this order does not change

if we replace the exact characteristic curves and gradients F by accurate enough
approximations.
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4.2. Second order semidiscretized scheme with approximate charac-

teristic curves. In most cases, the analytical expression for motion Xe is unknown;
instead, we know the velocity field v. Let us assume that Xe(p, 0) = p ∀p ∈ Ω. Then,
the motion Xe, assuming it exists, is the solution to the initial-value problem

Ẋe(p, t) = vm(p, t) Xe(p, 0) = p.(4.2)

Since the characteristics Xe(p, tn) cannot be exactly tracked in general, we propose
the following second order Runge-Kutta scheme to approximate Xn

e , n ∈ {0, . . . , N}.
For n = 0:

X0
RK(p) := p ∀p ∈ Ω,(4.3)

and for 0 ≤ n ≤ N − 1 we define by recurrence,

Xn+1
RK (p) := Xn

RK(p) + △tvn+ 1
2 (Y n(p)) ∀p ∈ Ω,(4.4)

being

Y n(p) := Xn
RK(p) +

△t
2

vn(Xn
RK(p)).(4.5)

A similar notation to the one in §2 is used for the Jacobian tensor of Xn
RK , namely,

F 0
RK(p) = I,(4.6)

and for 0 ≤ n ≤ N − 1,

Fn+1
RK (p) = Fn

RK(p) + ∆tLn+ 1
2 (Y n(p))

(
I +

∆t

2
Ln(Xn

RK(p))

)
Fn

RK(p).(4.7)

Now, we state some lemmas concerning properties of the approximate characteristics
Xn

RK . For this purpose, we require the time step to be upper bounded and the
following assumption:

Hypothesis 1. There exists a parameter δ > 0, such that the velocity field v is
defined in

T δ :=
⋃

t∈[0,T ]

Ω
δ

t × {t},(4.8)

being

Ωδ
t :=

⋃

x∈Ωt

B(x, δ).(4.9)

Moreover v ∈ C1(T δ).
Lemma 4.1. Under Hypothesis 1, there exists a parameter η > 0 such that if

∆t < η then Xn
RK(p) is defined ∀p ∈ Ω and ∀n ∈ {0, . . . , N}, and the following

inclusion holds

Xn
RK(Ω) ⊂ Ωδ

tn
.
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Proof. The result can be easily proved by applying Taylor expansion to Xe in the
time variable and using the regularity of v.

Lemma 4.2. Under Hypothesis 1, if ∆t < η then

||Fn
RK ||∞,Ω ≤ eT (||L||

∞,T δ +C∆t) ∀ n ∈ {0, . . . , N}.(4.10)

Here constant C depends on v.

Proof. Inequality (4.10) follows by applying norms to (4.7), using the initial
condition (4.6) and applying the discrete Gronwall inequality.

Lemma 4.3. Under Hypothesis 1 if ∆t < min{η, 1/(2||L||∞,T δ )}, then

||(Fn
RK )−1||∞,Ω ≤ eT (||L||

∞,T δ+C∆t) ∀ n ∈ {0, . . . , N}(4.11)

and

(Fn+1
RK )−1(p) = (Fn

RK)−1(p)
(
I − ∆tLn+ 1

2 (Y n(p)) +O(∆t2)
)
,(4.12)

being the term O(∆t2) depending on v and p ∈ Ω, and 0 ≤ n ≤ N − 1.
Proof. Firstly, we can write

Fn+1
RK (p) = Mn

RK(p)Fn
RK(p),(4.13)

with

Mn
RK(p) := I + ∆tLn+ 1

2 (Y n(p))

(
I +

∆t

2
Ln(Xn

RK(p))

)
.(4.14)

Now, by applying norms to (4.14) we have that ||I −Mn
RK ||∞,Ω < 1. Thus, Mn

RK(p)
is invertible for 0 ≤ n ≤ N − 1 and then, by induction, we deduce that Fn+1

RK (p) is in-
vertible too, with (Fn+1

RK )−1(p) = (Fn
RK)−1(p)(Mn

RK)−1(p). Moreover, (Mn
RK)−1(p) =∑∞

j=0(I −Mn
RK(p))j so (4.12) follows. The proof of (4.11) is analogous to the one of

the previous lemma.
The following corollaries can be easily proved (see [6] for further details).

Corollary 4.4. Under the assumptions of Lemma 4.2, we have

|| detFn
RK ||∞,Ω ≤ eT (|| divv||

∞,T δ +C(v)∆t),(4.15)

detFn
RK(p) > 0 if ∆t < K,(4.16)

with K depending on v and 0 ≤ n ≤ N . Moreover, ∀p ∈ Ω detFn+1
RK (p) satisfies

detFn+1
RK (p) = detFn

RK(p)
(
1 + ∆t div vn+ 1

2 (Y n(p)) +O(∆t2)
)
,(4.17)

being O(∆t2) depending on v and 0 ≤ n ≤ N − 1.
Corollary 4.5. Under the assumptions of Lemma 4.3, we have

det (Fn+1
RK )−1(p) = det (Fn

RK)−1(p)
(
1 − ∆t div vn+ 1

2 (Y n(p)) +O(∆t2)
)
,(4.18)

∀p ∈ Ω, ∀n ∈ {0, . . . , N − 1}, with O(∆t2) depending on v. Moreover, ∀n ∈
{0, . . . , N}, we have

|| det (Fn
RK)−1||∞,Ω ≤ eT (||div v||

∞,T δ +C(v)∆t).(4.19)
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Lemma 4.6. Under Hypothesis 1 if ∆t < min{η, 1/(2||L||∞,T δ ),K}, where K is

the constant appearing in Corollary 4.4, then, ∀p ∈ Ω and ∀n ∈ {0, . . . , N}, we have

c̃1 ≤ detFn
RK(p) ≤ C̃1, c̃2 ≤ |(Fn

RK)−T (p)u| ≤ C̃2,(4.20)

being c̃j > 0, C̃j > 0, j = 1, 2, constants depending on v and T , and u ∈ Rd with
|u| = 1.
Proof. The result follows from expressions (4.10), (4.11), (4.15), (4.16) and (4.19),
and by using the following equality

1 = |u| =
∣∣(Fn

RK)T (p)(Fn
RK)−T (p)u

∣∣ ∀u ∈ Rd, |u| = 1.(4.21)

Now, we consider a motion satisfying the following assumption:
Hypothesis 2. The motion Xe satisfies

Ωt = Ω Xe(p, t) = p ∀p ∈ Γ ∀t ∈ [0, T ].

Remark 4.2. Notice that, if the motion verifies Hypothesis 2 then

Γt = Γ, v(x, t) = 0 ∀x ∈ Γ ∀t ∈ [0, T ].

Under Hypothesis 2, Lemma 4.1 can be improved.
Lemma 4.7. Let us assume Hypothesis 2. If ∆t < min{K, 1/(2||L||∞,T )}, then,

Xn
RK(p) is defined ∀p ∈ Ω and ∀n ∈ {0, . . . , N}, and Xn

RK(Ω) = Ω.

Proof. See Proposition 1 in [25].
In order to introduce approximations to the characteristic curves and gradient tensors
in scheme (4.1), some additional assumptions are required.

Firstly, we introduce a set containing Xn
RK(Ω), for every 0 ≤ n ≤ N , namely

Oδ :=
⋃

t∈[0,T ]

Ω
δ

t .(4.22)

Moreover, we define

T δ
ΓR :=

⋃

t∈[0,T ]

G
δ

t × {t},(4.23)

being

Gδ
t =

⋃

x∈ΓR
t

B(x, δ).(4.24)

Hypothesis 3. Function ρ is defined in Oδ and belongs to W 1,∞(Oδ), being Oδ

the set defined in (4.22). Moreover,

0 < γ ≤ ρ(x) a.e. x ∈ Oδ.(4.25)

Let us denote ρ1,∞ = ||ρ||1,∞,Oδ .
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Hypothesis 4. The diffusion tensor, A, is defined in Oδ and belongs to W1,∞(Oδ).
Moreover, A is symmetric and has the following form:

A =

(
An1

Θ
Θ Θ

)
,(4.26)

with An1
being a positive definite symmetric n1 × n1 tensor (n1 ≥ 1) and Θ an

appropriate zero tensor. Besides, there exists a strictly positive constant, Λ, which is
a uniform lower bound for the eigenvalues of An1

.
Remark 4.3. Notice that the diffusion tensor can be degenerate in some applica-

tions. This is the case, for instance, in some financial models where, nevertheless, the
diffusion tensor satisfies Hypothesis 4.

Hypothesis 5. Function f is defined in T δ and it is continuous with respect to the
time variable, in space L2.

Hypothesis 6. Function g is defined in T δ
ΓR and it is continuous with respect to

the time variable, in space H1. Besides, coefficient α in boundary condition (2.9) is
strictly positive.
Let us define the following sequences of functions of p.

Ãn
RK := (Fn

RK)−1A ◦Xn
RK(Fn

RK)−T detFn
RK ,

m̃n
RK = |(Fn

RK)−T m| detFn
RK ,

for 0 ≤ n ≤ N . Since usually the characteristic curves cannot be exactly computed,
we replace in (4.1) the exact characteristic curves and gradient tensors by accurate
enough approximations,

1

2

∫

Ω

(
ρ ◦Xn+1

RK detFn+1
RK + ρ ◦Xn

RK detFn
RK

) φn+1
m,∆t − φn

m,∆t

∆t
ψ dp

+
1

4

∫

Ω

(
Ãn+1

RK + Ãn
RK

)(
∇φn+1

m,∆t + ∇φn
m,∆t

)
· ∇ψ dp

+
α

4

∫

ΓR

(
m̃n+1

RK + m̃n
RK

) (
φn+1

m,∆t + φn
m,∆t

)
ψ dAp

=
1

2

∫

Ω

(
detFn+1

RK fn+1 ◦Xn+1
RK + detFn

RKf
n ◦Xn

RK

)
ψ dp

+
1

2

∫

ΓR

(
m̃n+1

RK gn+1 ◦Xn+1
RK + m̃n

RKg
n ◦Xn

RK

)
ψ dAp.

(4.27)

For these computations we have made the assumptions of Lemma 4.3, and Hypothesis
3, 4, 5 and 6.
Notice that we have used a lowest order characteristics approximation formula pre-
serving second order time accuracy.

Let us introduce Ln+ 1
2

∆t [φ] ∈ (H1(Ω))′ and Fn+ 1
2

∆t ∈ (H1(Ω))′ defined by

〈
Ln+ 1

2

∆t [φ], ψ
〉

:=

〈(
ρ ◦Xn+1

RK detFn+1
RK + ρ ◦Xn

RK detFn
RK

)

2

φn+1 − φn

∆t
, ψ

〉

Ω

+

〈(
Ãn+1

RK + Ãn
RK

)

2

(
∇φn+1 + ∇φn

)

2
,∇ψ

〉

Ω

+ α

〈(
m̃n+1

RK + m̃n
RK

)

2

(
φn+1 + φn

)

2
, ψ

〉

ΓR

,
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〈
Fn+ 1

2

∆t , ψ
〉

:=

〈
detFn+1

RK fn+1 ◦Xn+1
RK + detFn

RKf
n ◦Xn

RK

2
, ψ

〉

Ω

+

〈
m̃n+1

RK gn+1 ◦Xn+1
RK + m̃n

RKg
n ◦Xn

RK

2
, ψ

〉

ΓR

,

for φ ∈ C0(H1(Ω)) and ψ ∈ H1(Ω).

Remark 4.4. Regarding the definitions of Ln+ 1
2

∆t [φ] and Fn+ 1
2

∆t , only the values of
function φ at discrete time steps {tn}N

n=0 are required. Thus, the above definitions

can also be stated for a sequence of functions φ̂ = {φn}N
n=0 ∈ [H1(Ω)]N+1.

Then the semidiscretized time scheme can be written as follows:
{

Given φ0
m,∆t, find φ̂m,∆t = {φn

m,∆t}N
n=1 ∈

[
H1

ΓD (Ω)
]N

such that〈
Ln+ 1

2

∆t [φ̂m,∆t], ψ
〉

=
〈
Fn+ 1

2

∆t , ψ
〉

∀ ψ ∈ H1
ΓD (Ω) for n = 0, . . . , N − 1.

(4.28)

Remark 4.5. The stability and convergence properties to be studied in the next
sections still remain valid if we replace the approximation of characteristics appearing
in scheme (4.28) by higher order ones or by the exact value.

4.3. Stability of the semidiscretized scheme. In order to prove stability
estimates for problem (4.28), the assumptions considered in the previous section are
required.
Firstly, we notice that, as a consequence of Hypothesis 4, there exists a unique positive
definite symmetric n1 × n1 tensor field, Cn1

, such that An1
= (Cn1

)2. Let us denote
by C the symmetric and positive semidefinite d× d tensor defined by

C =

(
Cn1

Θ
Θ Θ

)
.(4.29)

Notice that A = C2 and C ∈ W1,∞(Oδ). Let us denote by G the matrix with
coefficients Gij = | gradCij |, 1 ≤ i, j ≤ d. At this point, let us introduce the constant

cA = max{||G||2
∞,Oδ , ||C||2

∞,Oδ},(4.30)

and the sequence of tensor fields

C̃n
RK := C ◦Xn

RK(Fn
RK)−T

√
detFn

RK ∀n ∈ {0, . . . , N}.

Next, let us denote by B the d× d tensor

B =

(
In1

Θ
Θ Θ

)
,(4.31)

where In1
is the n1 × n1 identity matrix. Clearly, under Hypothesis 4 we have

Λ||Bw||2Ω ≤ 〈Aw,w〉Ω ∀w ∈ Rd.(4.32)

Let us introduce the sequence of tensor fields

B̃n
RK := B(Fn

RK)−T
√

detFn
RK ∀n ∈ {0, . . . , N}.

As far as the velocity field is defined in T δ (see Hypothesis 1), we can introduce the
following assumption:
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Hypothesis 7. The velocity field satisfies

(I −B)L(x, t)B = 0 ∀(x, t) ∈ T δ.(4.33)

Remark 4.6. Hypothesis 7 is equivalent to having a velocity field v whose d− n1

last components depend only on the last d− n1 variables.
Remark 4.7. For any d× d tensor E of the form given in (4.26) it is easy to check

that

〈EHT w1,w2〉 = 〈EHTBw1, Bw2〉,

for any d × d tensor H satisfying (I − B)HB = 0, and vectors w1, w2 ∈ Rd. This
equality will be used below without explicitly stated. Moreover, under Hypothesis 7,
if ∆t < min{η, 1/(2||L||∞,T δ )} it is easy to prove that

|B(Fn
RK)−T (p)w| ≥ D|Bw|,

for p ∈ Ω, w ∈ Rd, n = 0, . . . , N , and D depending on v and T .
Now, it is convenient to notice that Hypothesis 4 also covers the nondegenerate case.
This hypothesis is usual in ultraparabolic equations (see, for instance, [24]), which
represent a wide class of degenerate diffusion equations arising from many applications
(see, for instance, [5]). Furthermore, as stated in [19], ultraparabolic problems either
have C∞ solutions or can be reduced to nondegenerate problems posed in a lower
spatial dimension. This is an important point, as the stability and error estimates
will be obtained under regularity assumptions on the solution.

In what follows, cv denotes the positive constant

cv := max
t∈[0,T ]

||v(·, t)||1,∞,Ωδ
t
,(4.34)

where || · ||1,∞,Ωδ
t

is the norm given in (2.12). Moreover, Cv (respectively, J and D)
will denote a generic positive constant, related to the norm of the velocity field v

(respectively, to the rest of the data of the problem), not necessarily the same at each
occurrence.

Corresponding to the semidiscretized scheme, we have to deal with sequences of
functions ψ̂ = {ψn}N

n=0. Thus, we will consider the spaces of sequences l∞(L2(Ω))
and l2(L2(Ω)) equipped with their respective usual norms:

∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
l∞(L2(Ω))

:= max
0≤n≤N

||ψn||Ω ,
∣∣∣
∣∣∣ψ̂
∣∣∣
∣∣∣
l2(L2(Ω))

:=

√√√√∆t

N∑

n=0

||ψn||2Ω.(4.35)

Similar definitions are considered for functional spaces l∞(L2(ΓR)) and l2(L2(ΓR))
associated with the Robin boundary condition and for vector-valued function spaces
l∞(L2(Ω)) and l2(L2(Ω)). Moreover, let us introduce the notations

Ŝ[ψ] := {ψn+1 + ψn}N−1
n=0 , R̂∆t[ψ] :=

{
ψn+1 − ψn

∆t

}N−1

n=0

.

We denote by ̂f ◦XRK and by ̂g ◦XRK the following sequences of functions

̂f ◦XRK := {fn ◦Xn
RK}N

n=0 ,
̂g ◦XRK := {gn ◦Xn

RK}N

n=0 .
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Before establishing some technical lemmas, let us recall the Young’s inequality

ab ≤ 1

2

(
ǫa2 +

1

ǫ
b2
)
,(4.36)

for a, b ∈ R and ǫ > 0, which will be extensively used in what follows.
Lemma 4.8. Let us assume Hypotheses 1, 3 and 4. Let {φn

m,∆t}N
n=1 be the solution

of (4.28). Then, there exist a positive constant c(v, T, δ) such that, for ∆t < c, we
have

〈
Ln+ 1

2

∆t [φ̂m,∆t], φ
n+1
m,∆t + φn

m,∆t

〉

≥ 1

∆t

∣∣∣∣
∣∣∣∣
√
ρ ◦Xn+1

RK detFn+1
RK φn+1

m,∆t

∣∣∣∣
∣∣∣∣
2

Ω

− 1

∆t

∣∣∣
∣∣∣
√
ρ ◦Xn

RK detFn
RKφ

n
m,∆t

∣∣∣
∣∣∣
2

Ω

+
1

4

∣∣∣
∣∣∣C̃n+1

RK

(
∇φn+1

m,∆t + ∇φn
m,∆t

)∣∣∣
∣∣∣
2

Ω
+

1

4

∣∣∣
∣∣∣C̃n

RK

(
∇φn+1

m,∆t + ∇φn
m,∆t

)∣∣∣
∣∣∣
2

Ω
(4.37)

+
α

4

∣∣∣∣
∣∣∣∣
√
m̃n+1

RK + m̃n
RK

(
φn+1

m,∆t + φn
m,∆t

)∣∣∣∣
∣∣∣∣
2

ΓR

−ĉγ
(∣∣∣∣
∣∣∣∣
√

detFn+1
RK φn+1

m,∆t

∣∣∣∣
∣∣∣∣
2

Ω

+
∣∣∣
∣∣∣
√

detFn
RKφ

n
m,∆t

∣∣∣
∣∣∣
2

Ω

)
,

where ĉ = ρ1,∞(cv + Cv∆t)/γ and n ∈ {0, . . . , N − 1}.

Proof. First, we decompose
〈
Ln+ 1

2

∆t [φ̂m,∆t], φ
n+1
m,∆t + φn

m,∆t

〉
= I1 + I2 + I3, with

I1 =

〈(
ρ ◦Xn+1

RK detFn+1
RK + ρ ◦Xn

RK detFn
RK

)

2

φn+1
m,∆t − φn

m,∆t

∆t
, φn+1

m,∆t + φn
m,∆t

〉

Ω

,

I2 =
1

4

〈(
Ãn+1

RK + Ãn
RK

)(
∇φn+1

m,∆t + ∇φn
m,∆t

)
,∇φn+1

m,∆t + ∇φn
m,∆t

〉
Ω
,

I3 =
α

4

〈(
m̃n+1

RK + m̃n
RK

) (
φn+1

m,∆t + φn
m,∆t

)
, φn+1

m,∆t + φn
m,∆t

〉
ΓR
.

Let K be the constant appearing in Corollary 4.4. If ∆t < K, we first have

I1 =

〈(
ρ ◦Xn+1

RK detFn+1
RK + ρ ◦Xn

RK detFn
RK

)

2

φn+1
m,∆t − φn

m,∆t

∆t
, φn+1

m,∆t + φn
m,∆t

〉

Ω

=
1

2∆t

∣∣∣∣
∣∣∣∣
√
ρ ◦Xn+1

RK detFn+1
RK φn+1

m,∆t

∣∣∣∣
∣∣∣∣
2

Ω

− 1

2∆t

∣∣∣
∣∣∣
√
ρ ◦Xn

RK detFn
RKφ

n
m,∆t

∣∣∣
∣∣∣
2

Ω

+
1

2∆t

∣∣∣
∣∣∣
√
ρ ◦Xn

RK detFn
RKφ

n+1
m,∆t

∣∣∣
∣∣∣
2

Ω
− 1

2∆t

∣∣∣∣
∣∣∣∣
√
ρ ◦Xn+1

RK detFn+1
RK φn

m,∆t

∣∣∣∣
∣∣∣∣
2

Ω

,

(4.38)

where we have used Hypothesis 3. Next, we introduce the function Y n
RK(p, ·) :

[tn, tn+1] −→ Ωδ
tn

, defined by Y n
RK(p, s) := Xn

RK(p) − (tn − s)vn+ 1
2 (Y n(p)), which

satisfies Y n
RK(p, tn) = Xn

RK(p) and Y n
RK(p, tn+1) = Xn+1

RK (p). If ∆t is small enough,
it is easy to prove that Y n

RK(p, ·) ⊂ Ωδ
tn

. By hypothesis, ρ is a differentiable function,
then by Barrow’s rule and the chain rule, the following identity holds:

ρ(Xn
RK(p)) = ρ(Xn+1

RK (p)) − ζn(p) for a.e. p ∈ Ω,(4.39)
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where

ζn(p) :=

∫ tn+1

tn

gradρ(Y n
RK(p, s)) · vn+ 1

2 (Y n(p)) ds for a.e. p ∈ Ω,(4.40)

verifies |ζn(p)| ≤ ρ1,∞cv∆t. Then, by using (4.17), (4.18) and (4.39) in (4.38), we get

I1 ≥ 1

∆t

∣∣∣∣
∣∣∣∣
√
ρ ◦Xn+1

RK detFn+1
RK φn+1

m,∆t

∣∣∣∣
∣∣∣∣
2

Ω

− 1

∆t

∣∣∣
∣∣∣
√
ρ ◦Xn

RK detFn
RKφ

n
m,∆t

∣∣∣
∣∣∣
2

Ω
(4.41)

− ρ1,∞ (cv + Cv∆t)

{∣∣∣∣
∣∣∣∣
√

detFn+1
RK φn+1

m,∆t

∣∣∣∣
∣∣∣∣
2

Ω

+
∣∣∣
∣∣∣
√

detFn
RKφ

n
m,∆t

∣∣∣
∣∣∣
2

Ω

}
.

For I2 we use the fact that A = C2 being C a symmetric tensor field. We obtain,

I2 :=
1

4

〈(
Ãn+1

RK + Ãn
RK

)(
∇φn+1

m,∆t + ∇φn
m,∆t

)
,∇φn+1

m,∆t + ∇φn
m,∆t

〉
Ω

(4.42)

=
1

4

∣∣∣
∣∣∣C̃n+1

RK

(
∇φn+1

m,∆t + ∇φn
m,∆t

)∣∣∣
∣∣∣
2

Ω
+

1

4

∣∣∣
∣∣∣C̃n

RK

(
∇φn

m,∆t + ∇φn
m,∆t

)∣∣∣
∣∣∣
2

Ω
.

For I3 we have

I3 =
α

4

∣∣∣∣
∣∣∣∣
√
m̃n+1

RK + m̃n
RK

(
φn+1

m,∆t + φn
m,∆t

)∣∣∣∣
∣∣∣∣
2

ΓR

.(4.43)

Then, by summing up (4.41), (4.42) and (4.43) we get inequality (4.37).
Lemma 4.9. Let us assume Hypotheses 1, 3, 4 and 7. Let {φn

m,∆t}N
n=1 be the

solution of (4.28) and α > 0 be the constant appearing in the Robin boundary condition
(2.9). Then, there exist a positive constant c(v, T, δ) such that, for ∆t < c, we have

〈
Ln+ 1

2

∆t [φ̂m,∆t], φ
n+1
m,∆t − φn

m,∆t

〉

≥ 1

2∆t

∣∣∣∣
∣∣∣∣
√(

ρ ◦Xn+1
RK detFn+1

RK + ρ ◦Xn
RK detFn

RK

) (
φn+1

m,∆t − φn
m,∆t

)∣∣∣∣
∣∣∣∣
2

Ω

+
1

2

∣∣∣
∣∣∣C̃n+1

RK ∇φn+1
m,∆t

∣∣∣
∣∣∣
2

Ω
− 1

2

∣∣∣
∣∣∣C̃n

RK∇φn
m,∆t

∣∣∣
∣∣∣
2

Ω
(4.44)

+
α

2

∣∣∣∣
∣∣∣∣
√
m̃n+1

RK φn+1
m,∆t

∣∣∣∣
∣∣∣∣
2

ΓR

− α

2

∣∣∣
∣∣∣
√
m̃n

RKφ
n
m,∆t

∣∣∣
∣∣∣
2

ΓR

−ĉ∆tΛ
(∣∣∣
∣∣∣B̃n+1

RK ∇φn+1
m,∆t

∣∣∣
∣∣∣
2

Ω
+
∣∣∣
∣∣∣B̃n

RK∇φn
m,∆t

∣∣∣
∣∣∣
2

Ω

)

−ĉ∆tα
(∣∣∣∣
∣∣∣∣
√
m̃n+1

RK φn+1
m,∆t

∣∣∣∣
∣∣∣∣
2

ΓR

+
∣∣∣
∣∣∣
√
m̃n

RKφ
n
m,∆t

∣∣∣
∣∣∣
2

ΓR

)
,

where ĉ = max {cACv/Λ, Cv} and n ∈ {0, . . . , N − 1}.

Proof. First, we decompose
〈
Ln+ 1

2

∆t [φ̂m,∆t], φ
n+1
m,∆t − φn

m,∆t

〉
= I1 + I2 + I3, with

I1 =

〈(
ρ ◦Xn+1

RK detFn+1
RK + ρ ◦Xn

RK detFn
RK

)

2

φn+1
m,∆t − φn

m,∆t

∆t
, φn+1

m,∆t − φn
m,∆t

〉

Ω

,

I2 =
1

4

〈(
Ãn+1

RK + Ãn
RK

)(
∇φn+1

m,∆t + ∇φn
m,∆t

)
,∇φn+1

m,∆t −∇φn
m,∆t

〉
Ω
,

I3 =
α

4

〈(
m̃n+1

RK + m̃n
RK

) (
φn+1

m,∆t + φn
m,∆t

)
, φn+1

m,∆t − φn
m,∆t

〉
ΓR
.
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For I1, we use Hypothesis 3 to get

I1 =
1

2∆t

∣∣∣∣
∣∣∣∣
√(

ρ ◦Xn+1
RK detFn+1

RK + ρ ◦Xn
RK detFn

RK

) (
φn+1

m,∆t − φn
m,∆t

)∣∣∣∣
∣∣∣∣
2

Ω

,

(4.45)

where we have assumed that ∆t < K, being K the constant appearing in Corollary
4.4. For I2 we first have

I2 =
1

4

∣∣∣
∣∣∣C̃n+1

RK ∇φn+1
m,∆t

∣∣∣
∣∣∣
2

Ω
− 1

4

∣∣∣
∣∣∣C̃n

RK∇φn
m,∆t

∣∣∣
∣∣∣
2

Ω
(4.46)

+
1

4

∣∣∣
∣∣∣C̃n

RK∇φn+1
m,∆t

∣∣∣
∣∣∣
2

Ω
− 1

4

∣∣∣
∣∣∣C̃n+1

RK ∇φn
m,∆t

∣∣∣
∣∣∣
2

Ω
.

Then we use Corollary 4.5, Hypotheses 4 and 7, and equality (4.7) to get

1

4

∣∣∣
∣∣∣C̃n

RK∇φn+1
m,∆t

∣∣∣
∣∣∣
2

Ω
≥ 1

4

∣∣∣∣
∣∣∣∣C ◦Xn

RK(Fn+1
RK )−T∇φn+1

m,∆t

√
detFn+1

RK

∣∣∣∣
∣∣∣∣
2

Ω(4.47)

−cACv∆t
∣∣∣
∣∣∣B̃n+1

RK ∇φn+1
m,∆t

∣∣∣
∣∣∣
2

Ω
.

Moreover, since An1
is symmetric and positive definite, Cn1

=
√
An1

is a differentiable
tensor field. Then by Barrow’s rule and the chain rule, the following identity holds,

C(Xn+1
RK (p)) = C(Xn

RK(p)) +Dn(p) for a.e. p ∈ Ω,(4.48)

where we have denoted by Dn the d× d symmetric tensor field defined by

Dn
ij(p) :=

∫ tn+1

tn

gradCij(Y
n
RK(p, s)) · vn+ 1

2 (Y n(p)) ds,(4.49)

being Y n
RK the mapping defined in the proof of Lemma 4.8. Notice that D is of the

form given in (4.29) and verifies ||Dn||∞,Ω ≤ cv
√
cA∆t. Then, from the previous

properties, we have

1

4

∣∣∣
∣∣∣C̃n

RK∇φn+1
m,∆t

∣∣∣
∣∣∣
2

Ω
≥ 1

4

∣∣∣
∣∣∣C̃n+1

RK ∇φn+1
m,∆t

∣∣∣
∣∣∣
2

Ω
− cACv∆t

∣∣∣
∣∣∣B̃n+1

RK ∇φn+1
m,∆t

∣∣∣
∣∣∣
2

Ω
.(4.50)

Similarly, we obtain the estimate

−1

4
||C̃n+1

RK ∇φn
m,∆t||2Ω ≥ −1

4
||C̃n

RK∇φn
m,∆t||2Ω − cACv∆t||B̃n

RK∇φn
m,∆t||2Ω.(4.51)

Thus, by introducing (4.50) and (4.51) in equality (4.46) we obtain the following
inequality:

I2 ≥ 1

2

∣∣∣
∣∣∣C̃n+1

RK ∇φn+1
m,∆t

∣∣∣
∣∣∣
2

Ω
− 1

2

∣∣∣
∣∣∣C̃n

RK∇φn
m,∆t

∣∣∣
∣∣∣
2

Ω(4.52)

− cACv∆t
∣∣∣
∣∣∣B̃n+1

RK ∇φn+1
m,∆t

∣∣∣
∣∣∣
2

Ω
− cACv∆t

∣∣∣
∣∣∣B̃n

RK∇φn
m,∆t

∣∣∣
∣∣∣
2

Ω
.

For I3 we first have

I3 =
α

4

∣∣∣∣
∣∣∣∣
√
m̃n+1

RK φn+1
m,∆t

∣∣∣∣
∣∣∣∣
2

ΓR

− α

4

∣∣∣
∣∣∣
√
m̃n

RKφ
n
m,∆t

∣∣∣
∣∣∣
2

ΓR

(4.53)

+
α

4

∣∣∣
∣∣∣
√
m̃n

RKφ
n+1
m,∆t

∣∣∣
∣∣∣
2

ΓR
− α

4

∣∣∣∣
∣∣∣∣
√
m̃n+1

RK φn
m,∆t

∣∣∣∣
∣∣∣∣
2

ΓR

.
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Next, by applying Corollaries 4.4, 4.5, Lemma 4.3 and equality (4.7) we obtain

I3 ≥ α

2

∣∣∣∣
∣∣∣∣
√
m̃n+1

RK φn+1
m,∆t

∣∣∣∣
∣∣∣∣
2

ΓR

− α

2

∣∣∣
∣∣∣
√
m̃n

RKφ
n
m,∆t

∣∣∣
∣∣∣
2

ΓR

(4.54)

− Cvα∆t

(∣∣∣∣
∣∣∣∣
√
m̃n+1

RK φn+1
m,∆t

∣∣∣∣
∣∣∣∣
2

ΓR

+
∣∣∣
∣∣∣
√
m̃n

RKφ
n
m,∆t

∣∣∣
∣∣∣
2

ΓR

)
.

Then, by summing up (4.45), (4.52) and (4.54), inequality (4.44) follows.
Now, in order to get error estimates we need to prove stability inequalities for more
general right-hand sides, namely for the problem,

{
Given φ0

m,∆t, find φ̂m,∆t = {φn
m,∆t}N

n=1 ∈
[
H1

ΓD (Ω)
]N

such that〈
Ln+ 1

2

∆t [φ̂m,∆t], ψ
〉

=
〈
Hn+ 1

2

∆t , ψ
〉

∀ψ ∈ H1
ΓD (Ω) for n = 0, . . . , N − 1,

(4.55)

with
〈
Hn+ 1

2

∆t , ψ
〉

=
〈
Sn+1, ψ

〉
Ω

+
〈
Gn+1, ψ

〉
ΓR .

Hypothesis 8. Ŝ = {Sn}N
n=1 ∈ [L2(Ω)]N and Ĝ = {Gn}N

n=1 ∈ [L2(ΓR)]N .
Lemma 4.10. Let us assume Hypotheses 1 and 8. Let us suppose α > 0 and

∆t < min{η, 1/(2||L||∞,T δ ),K}, being η and K the constants appearing, respectively,
in Lemma 4.1 and in Corollary 4.4. Then, we have

〈Sn+1, ψ + ϕ〉Ω + 〈Gn+1, ψ + ϕ〉ΓR ≤ cs||Sn+1||2Ω

+
1

2

(∣∣∣∣
∣∣∣∣
√

detFn+1
RK ψ

∣∣∣∣
∣∣∣∣
2

Ω

+
∣∣∣
∣∣∣
√

detFn
RKϕ

∣∣∣
∣∣∣
2

Ω

)
+

4cg
α

||Gn+1||2ΓR

+
α

32

∣∣∣∣
∣∣∣∣
√
m̃n+1

RK + m̃n
RK (ϕ+ ψ)

∣∣∣∣
∣∣∣∣
2

ΓR

,

(4.56)

∀ϕ, ψ ∈ H1(Ω), with cs = 1/c̃1 and cg = 1/(c̃1c̃2), where c̃1 and c̃2 are the constants
appearing in Lemma 4.6.

Proof. The estimate follows directly by applying the Cauchy-Schwarz inequality
to the left-hand side of (4.56), and using inequality (4.36) and Lemma 4.6.

Theorem 4.11. Let us assume Hypotheses 1, 3, 4 and 8. Let φ̂m,∆t be the solu-
tion of (4.55) subject to the initial value φ0

m,∆t ∈ H1
ΓD (Ω) and α > 0 be the constant

appearing in the Robin boundary condition (2.9). Then there exist two positive con-
stants J and D, which are independent of the diffusion tensor, such that if ∆t < D
then

√
γ

∣∣∣∣
∣∣∣∣

̂√
detFRKφm,∆t

∣∣∣∣
∣∣∣∣
l∞(L2(Ω))

+

√
Λ

4

∣∣∣∣
∣∣∣∣

̂
B̃RKS[∇φm,∆t]

∣∣∣∣
∣∣∣∣
l2(L2(Ω))

+

√
α

8

∣∣∣∣
∣∣∣∣

̂√
S [m̃RK ]S[φm,∆t]

∣∣∣∣
∣∣∣∣
l2(L2(ΓR))

≤ J
(√
γ||φ0

m,∆t||Ω

+||Ŝ||l2(L2(Ω)) + ||Ĝ||l2(L2(ΓR))

)
.

(4.57)

where Ŝ = {Sn}N
n=1, Ĝ = {Gn}N

n=1.
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Proof. Sequence φ̂m,∆t = {φn
m,∆t}N

n=0 satisfies
〈
Ln+ 1

2

∆t [φ̂m,∆t], φ
n+1
m,∆t + φn

m,∆t

〉
=

〈
Hn+ 1

2

∆t , φn+1
m,∆t + φn

m,∆t

〉
. We can use Lemma 4.8 to obtain a lower bound of this

expression, and Lemma 4.10 for ψ = φn+1
m,∆t and ϕ = φn

m,∆t to obtain an upper bound.
By jointly considering both estimates, we get

1

∆t

∣∣∣∣
∣∣∣∣
√
ρ ◦Xn+1

RK detFn+1
RK φn+1

m,∆t

∣∣∣∣
∣∣∣∣
2

Ω

− 1

∆t

∣∣∣
∣∣∣
√
ρ ◦Xn

RK detFn
RKφ

n
m,∆t

∣∣∣
∣∣∣
2

Ω

+
1

4

∣∣∣
∣∣∣C̃n

RK

(
∇φn+1

m,∆t + ∇φn
m,∆t

)∣∣∣
∣∣∣
2

Ω
+
α

8

∣∣∣∣
∣∣∣∣
√
m̃n+1

RK + m̃n
RK

(
φn+1

m,∆t + φn
m,∆t

)∣∣∣∣
∣∣∣∣
2

ΓR

≤ cs||Sn+1||2Ω +
4cg
α

||Gn+1||2ΓR

+ĉγ

(∣∣∣∣
∣∣∣∣
√

detFn+1
RK φn+1

m,∆t

∣∣∣∣
∣∣∣∣
2

Ω

+
∣∣∣∣√ detFn

RKφ
n
m,∆t

∣∣∣∣2
Ω

)
,

(4.58)

where ĉ = max {1/γ, 2ρ1,∞(cv + Cv∆t)/γ}. Let us introduce the notation

θ1n := γ
∣∣∣
∣∣∣
√

detFn
RKφ

n
m,∆t

∣∣∣
∣∣∣
2

Ω
,

θ2n :=
Λ

4

n−1∑

s=0

∆t
∣∣∣
∣∣∣B̃s

RK

(
∇φs+1

m,∆t + ∇φs
m,∆t

)∣∣∣
∣∣∣
2

Ω
,

θn :=
α

8

n−1∑

s=0

∆t

∣∣∣∣
∣∣∣∣
√
m̃s+1

RK + m̃s
RK

(
φs+1

m,∆t + φs
m,∆t

)∣∣∣∣
∣∣∣∣
2

ΓR

.

Now, for a fixed integer q ≥ 1, let us sum (4.58) multiplied by ∆t from n = 0 to
n = q − 1. Then, with the above notation we have

(1 − ĉ∆t)θ1q + θ2q + θq ≤ 2ĉ∆t

q−1∑

n=0

θ1n + β
(
θ10 + ||Ŝ||2l2(L2(Ω)) + ||Ĝ||2l2(L2(ΓR))

)
,

where we have used Hypotheses 3 and 4. In the above equation β denotes a positive
constant and ĉ = max {1/γ, 2ρ1,∞(cv + Cv∆t)/γ}. For ∆t small enough, we can
apply the discrete Gronwall inequality (see, for instance, [23]) and take the maximun
in q ∈ {1, . . . , N}. Then, estimate (4.57) follows.

Corollary 4.12. Let us assume Hypotheses 1, 3, 4, 5 and 6. Let φ̂m,∆t be the
solution of (4.28) subject to the initial value φ0

m,∆t ∈ H1
ΓD (Ω). Then, there exist two

positive constants J and D, independent of the diffusion tensor and such that, for
∆t < D, we have

√
γ

∣∣∣∣
∣∣∣∣

̂√
detFRKφm,∆t

∣∣∣∣
∣∣∣∣
l∞(L2(Ω))

+

√
Λ

4

∣∣∣∣
∣∣∣∣

̂
B̃RKS[∇φm,∆t]

∣∣∣∣
∣∣∣∣
l2(L2(Ω))

+

√
α

8

∣∣∣∣
∣∣∣∣

̂√
S [m̃RK ]S[φm,∆t]

∣∣∣∣
∣∣∣∣
l2(L2(ΓR))

≤ J
(√
γ||φ0

m,∆t||Ω

+
∣∣∣
∣∣∣ ̂detFRKf ◦XRK

∣∣∣
∣∣∣
l2(L2(Ω))

+
∣∣∣
∣∣∣ ̂m̃RKg ◦XRK

∣∣∣
∣∣∣
l2(L2(ΓR))

)
.

(4.59)
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Proof. The result follows directly by replacing

Sn+1 with 1/2
(
detFn+1

RK fn+1 ◦Xn+1
RK + detFn

RKf
n ◦Xn

RK

)

and Gn+1 with 1/2
(
m̃n+1

RK gn+1 ◦Xn+1
RK + m̃n

RKg
n ◦Xn

RK

)
in (4.57).

Lemma 4.13. Let us assume Hypotheses 1 and 8. Let ∆t < min{η,K}, being
η and K the constants appearing in Lemma 4.1 and in Corollary 4.4, respectively.
Then, we have

〈
Sn+1, ψ − ϕ

〉
Ω
≤ 2cs∆t

γ
||Sn+1||2Ω +

γ

16∆t

∣∣∣∣
∣∣∣∣
√

detFn+1
RK + detFn

RK(ψ − ϕ)

∣∣∣∣
∣∣∣∣
2

Ω

,

(4.60)

∀ϕ, ψ ∈ L2(Ω), where cs is the constant appearing in Lemma 4.10.

Proof. The result easily follows by applying the Cauchy-Schwarz inequality, in-
equality (4.36) with ǫ = 8∆t/γ and Lemma 4.6.

Lemma 4.14. Let us assume Hypotheses 1 and 8. Suppose that α > 0 and
∆t < min{η, 1/(2||L||∞,T δ ),K}. Then, for any sequence {ψn}N

n=0 ∈ [L2(ΓR)]N+1

and any q ∈ {1, . . . , N}, the following inequality holds:
∣∣∣∣∣

q−1∑

n=0

〈Gn+1, ψn+1 − ψn〉ΓR

∣∣∣∣∣ ≤
4cg
α

||Gq||2ΓR +
α

16
||
√
m̃q

RKψ
q||2ΓR +

1

2α
||G1||2ΓR

+
α

2
||ψ0||2ΓR +

∆tcg
2α

q−1∑

n=1

∣∣∣∣
∣∣∣∣
Gn+1 −Gn

∆t

∣∣∣∣
∣∣∣∣
2

ΓR

+
∆tα

2

q−1∑

n=1

||
√
m̃n

RKψ
n||2ΓR .

(4.61)

Proof. The result follows from the equality

q−1∑

n=0

〈Gn+1, ψn+1 − ψn〉ΓR = 〈Gq, ψq〉ΓR − 〈G1, ψ0〉ΓR(4.62)

−∆t

q−1∑

n=1

〈
Gn+1 −Gn

∆t
, ψn

〉

ΓR

.

Indeed, the three terms on the right-hand side can be bounded by using the Cauchy-
Schwarz inequality, inequality (4.36) and Lemma 4.6.

Theorem 4.15. Let us assume Hypotheses 1, 3, 4, 7 and 8, and let φ̂m,∆t be
the solution of (4.55) subject to the initial value φ0

m,∆t ∈ H1
ΓD (Ω). Let α > 0 be

the constant appearing in the Robin boundary condition (2.9). Then, there exist two
positive constants J(v, cA/Λ, T ) and D(δ,v, T, cA/Λ) such that if ∆t < D then

√
γ

4

∣∣∣∣
∣∣∣∣

̂√
S[ detFRK ]R∆t[φm,∆t]

∣∣∣∣
∣∣∣∣
l2(L2(Ω))

+

√
Λ

2

∣∣∣∣
∣∣∣∣

̂
B̃RK∇φm,∆t

∣∣∣∣
∣∣∣∣
l∞(L2(Ω))

+

√
α

4

∣∣∣∣
∣∣∣∣

̂√
m̃RKφm,∆t

∣∣∣∣
∣∣∣∣
l∞(L2(ΓR))

≤ J

(√
Λ

2

∣∣∣∣B∇φ0
m,∆t

∣∣∣∣
Ω

+

√
α

4

∣∣∣∣φ0
m,∆t

∣∣∣∣
ΓR

+ ||Ŝ||l2(L2(Ω)) + ||Ĝ||l∞(L2(ΓR)) +
∣∣∣
∣∣∣R̂∆t[G]

∣∣∣
∣∣∣
l2(L2(ΓR))

)
.

(4.63)
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Proof. Sequence φ̂m,∆t = {φn
m,∆t}N

n=0 satisfies
〈
Ln+ 1

2

∆t [φ̂m,∆t], φ
n+1
m,∆t − φn

m,∆t

〉
=

〈
Hn+ 1

2

∆t , φn+1
m,∆t − φn

m,∆t

〉
. Then, we use Lemma 4.9 and Lemma 4.13 for ψ = φn+1

m,∆t

and ϕ = φn
m,∆t to obtain, respectively, a lower and an upper bound for this expression.

By jointly considering both estimates, we get

1

2∆t

∣∣∣∣
∣∣∣∣
√(

ρ ◦Xn+1
RK detFn+1

RK + ρ ◦Xn
RK detFn

RK

) (
φn+1

m,∆t − φn
m,∆t

)∣∣∣∣
∣∣∣∣
2

Ω

+
1

2

∣∣∣
∣∣∣C̃n+1

RK ∇φn+1
m,∆t

∣∣∣
∣∣∣
2

Ω
− 1

2

∣∣∣
∣∣∣C̃n

RK∇φn
m,∆t

∣∣∣
∣∣∣
2

Ω
+
α

2

∣∣∣∣
∣∣∣∣
√
m̃n+1

RK φn+1
m,∆t

∣∣∣∣
∣∣∣∣
2

ΓR

−α
2

∣∣∣
∣∣∣
√
m̃n

RKφ
n
m,∆t

∣∣∣
∣∣∣
2

ΓR
≤ ĉ∆tΛ

(∣∣∣
∣∣∣B̃n+1

RK ∇φn+1
m,∆t

∣∣∣
∣∣∣
2

Ω
+
∣∣∣
∣∣∣B̃n

RK∇φn
m,∆t

∣∣∣
∣∣∣
2

Ω

)

+ĉ∆tα

(∣∣∣∣
∣∣∣∣
√
m̃n+1

RK φn+1
m,∆t

∣∣∣∣
∣∣∣∣
2

ΓR

+
∣∣∣
∣∣∣
√
m̃n

RKφ
n
m,∆t

∣∣∣
∣∣∣
2

ΓR

)
+

2cs∆t

γ
||Sn+1||2Ω

+
γ

16∆t

∣∣∣∣
∣∣∣∣
√

detFn+1
RK + detFn

RK(φn+1
m,∆t − φn

m,∆t)

∣∣∣∣
∣∣∣∣
2

Ω

+
〈
Gn+1, φn+1

m,∆t − φn
m,∆t

〉
ΓR
,

(4.64)
with ĉ = max {cACv/Λ, Cv}. For n = 0, . . . , N , let us introduce the notations

θ1n :=
γ

4∆t

n−1∑

s=0

∣∣∣∣
∣∣∣∣
√

detF s+1
RK + detF s

RK

(
φs+1

m,∆t − φs
m,∆t

)∣∣∣∣
∣∣∣∣
2

Ω

,

θ2n :=
Λ

2

∣∣∣
∣∣∣B̃n

RK∇φn
m,∆t

∣∣∣
∣∣∣
2

Ω
, θn :=

α

4

∣∣∣
∣∣∣
√
m̃n

RKφ
n
m,∆t

∣∣∣
∣∣∣
2

ΓR
.

Now, for a fixed q ≥ 1, let us sum (4.64) from n = 0 to n = q − 1. With the above

notation and by using Lemma 4.14 for ψ̂ = φ̂m,∆t, we get

θ1q + (1 − 2ĉ∆t)θ2q + (1 − 4ĉ∆t)θq ≤ 4ĉ∆t

q−1∑

n=0

θ2n + 10ĉ∆t

q−1∑

n=0

θn

+β

(
θ20 + θ0 + ||Ŝ||2l2(L2(Ω)) + ||Ĝ||2l∞(L2(ΓR)) +

∣∣∣
∣∣∣R̂∆t[G]

∣∣∣
∣∣∣
2

l2(L2(ΓR))

)
,(4.65)

where we have used Hypotheses 3 and 4. In the above equation ĉ = max {cACv/Λ, Cv}
and β denotes a positive constant. For ∆t small enough, we can apply the discrete
Gronwall inequality (see, for instance, [23]) and take the maximun in q ∈ {1, . . . , N}.
Thus, estimate (4.63) follows.

Corollary 4.16. Let us assume Hypotheses 1, 3, 4, 5, 6 and 7, and let φ̂m,∆t

be the solution of (4.28) subject to the initial value φ0
m,∆t ∈ H1

ΓD (Ω). Then there exist
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two positive constants J(v, cA/Λ, T ) and D(δ,v, T, cA/Λ) such that if ∆t < D then

√
γ

4

∣∣∣∣
∣∣∣∣

̂√
S[ detFRK ]R∆t[φm,∆t]

∣∣∣∣
∣∣∣∣
l2(L2(Ω))

+

√
Λ

2

∣∣∣∣
∣∣∣∣

̂
B̃RK∇φm,∆t

∣∣∣∣
∣∣∣∣
l∞(L2(Ω))

+

√
α

4

∣∣∣∣
∣∣∣∣

̂√
m̃RKφm,∆t

∣∣∣∣
∣∣∣∣
l∞(L2(ΓR))

≤ J

(√
Λ

2

∣∣∣∣B∇φ0
m,∆t

∣∣∣∣
Ω

+

√
α

4

∣∣∣∣φ0
m,∆t

∣∣∣∣
ΓR

+
∣∣∣
∣∣∣ ̂detFRKf ◦XRK

∣∣∣
∣∣∣
l2(L2(Ω))

+
∣∣∣
∣∣∣ ̂m̃RKg ◦XRK

∣∣∣
∣∣∣
l∞(L2(ΓR))

+
∣∣∣
∣∣∣ ̂R∆t[m̃RKg ◦XRK ]

∣∣∣
∣∣∣
l2(L2(ΓR))

)
.

(4.66)

Proof. The result follows directly by replacing

Sn+1 with 1/2
(
detFn+1

RK fn+1 ◦Xn+1
RK + detFn

RKf
n ◦Xn

RK

)

and Gn+1 with 1/2
(
m̃n+1

RK g ◦Xn+1
RK + m̃n

RKg ◦Xn
RK

)
in (4.63).

Remark 4.8. Notice that, constants J and D appearing in Theorem 4.15 and
Corollary 4.16 depend on the diffusion tensor, more precisely they depend on fraction
cA
Λ

. In most cases this fraction is bounded in the hyperbolic limit.

Remark 4.9. In the particular case of Dirichlet boundary conditions (ΓD ≡ Γ),
diffusion tensor of the form A = ǫB and f = 0, the previous corollary can be improved.
Specifically, by using analogous procedures to the ones in the previous corollary we
can obtain the following l∞(H1) stability result with constants (J andD) independent
of the diffusion constant ǫ

√
γ

2

∣∣∣∣
∣∣∣∣

̂√
S[ detFRK ]R∆t[φm,∆t]

∣∣∣∣
∣∣∣∣
l2(L2(Ω))

+

√
1

2

∣∣∣∣
∣∣∣∣

̂
B̃RK∇φm,∆t

∣∣∣∣
∣∣∣∣
l∞(L2(Ω))

≤ J(1 +
√
ǫ)

√
1

2

∣∣∣∣B∇φ0
m,∆t

∣∣∣∣
Ω
.

(4.67)

for ∆t < D.

4.4. Error estimate for the semidiscretized scheme. The aim of the present

section is to estimate the difference between the discrete solution of (4.28), φ̂m,∆t :=

{φn
m,∆t}N

n=0, and the exact solution of the continuous problem, φ̂m := {φn
m}N

n=0. Ac-
cording to (3.8) for tn+ 1

2
, with 0 ≤ n ≤ N − 1, the latter solves the problem

〈
Ln+ 1

2 [φ̂m], ψ
〉

=
〈
Fn+ 1

2 , ψ
〉

∀ψ ∈ H1
ΓD(Ω),(4.68)

where Ln+ 1
2 [φ̂m] ∈ (H1(Ω))′ and Fn+ 1

2 ∈ (H1(Ω))′ are defined by

〈
Ln+ 1

2 [φ̂m], ψ
〉

:=

〈
ρ ◦Xn+ 1

2
e detFn+ 1

2

(
φ̇m

)n+ 1
2

, ψ

〉

Ω

+
〈
Ã

n+ 1
2

m ∇φn+ 1
2

m ,∇ψ
〉

Ω
+ α

〈
m̃n+ 1

2φ
n+ 1

2
m , ψ

〉
ΓR
,

〈
Fn+ 1

2 , ψ
〉

:=
〈

detFn+ 1
2 fn+ 1

2 ◦Xn+ 1
2

e , ψ
〉

Ω
+
〈
m̃n+ 1

2 gn+ 1
2 ◦Xn+ 1

2
e , ψ

〉
ΓR
,
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∀ψ ∈ H1(Ω).
The error estimate in the l∞(L2(Ω))-norm, to be stated in Theorem 4.27, is proved
by means of Theorem 4.11 and the forthcoming Lemmas 4.25 and 4.26. On the other
hand, the error estimate for the gradient in the l∞(L2(Ω))-norm, to be stated in
Theorem 4.28, is proved by means of Theorem 4.15 and the forthcoming Lemmas
4.25 and 4.26. Before doing this we give some results with sketched proofs (see [6] for
further details). Some auxiliary mappings will be introduced. They will be denoted
by ξ, u and Ψ depending on whether they are scalar, vector or tensor mappings,
respectively. Moreover, if v is smooth enough, it is easy to prove that F , F−1,
detF and their partial derivatives, as well as the ones of (Fn

RK)−1 and detFn
RK can

be bounded by constants depending only on v and T . These estimates and the ones
obtained in §4.2 for Fn

RK , (Fn
RK)−1 and detFn

RK will be used below without explicitly
stated (see [6] for further details).

Lemma 4.17. Let us assume Hypotheses 1 and 3. Let us suppose that v ∈
C2(T δ), Xe ∈ C4(Ω × [0, T ]), ∆t < η, ϕ ∈ C3(L2(Ω)) and ρm ∈ C2(L∞(Ω)). Let us

define the function ξn+ 1
2 : Ω −→ R, for n ∈ {0, . . . , N − 1}, by

ξn+ 1
2 (p) := ρ ◦Xn+ 1

2
e (p) detFn+ 1

2 (p)ϕ̇n+ 1
2 (p)

−1

2

(
ρ ◦Xn+1

RK (p) detFn+1
RK (p) + ρ ◦Xn

RK(p) detFn
RK(p)

) ϕn+1(p) − ϕn(p)

∆t
,

for a.e. p ∈ Ω. Then ξn+ 1
2 ∈ L2(Ω) and ||ξn+ 1

2 ||Ω ≤ C(T,v, ρ)∆t2||ϕ||C3(L2(Ω)),
n = 0, . . . , N − 1.

Proof. The result follows by using Taylor expansions and noting that if Xe ∈
C3(Ω × [0, T ]) and v ∈ C1(T δ) then |Xn

e (p) −Xn
RK(p)| ≤ C(v, T )∆t2, and if Xe ∈

C4(Ω × [0, T ]) and v ∈ C2(T δ) then | detFn(p) − detFn
RK(p)| ≤ C(v, T )∆t2.

Lemma 4.18. Let us assume that Am ∈ C2(L∞(Ω)). Let w ∈ C2(L2(Ω)) be a

given mapping and un+ 1
2 : Ω −→ Rd, for n ∈ {0, . . . , N − 1}, be defined by

un+ 1
2 (p) := Ã

n+ 1
2

m (p)wn+ 1
2 (p) −

(
Ãn+1

m (p) + Ãn
m(p)

2

)(
wn+1(p) + wn(p)

2

)
,

for a.e. p ∈ Ω. Then, un+ 1
2 ∈ L2(Ω) and ||un+ 1

2 ||Ω ≤ C(T,v, A)∆t2||w||C2(L2(Ω)),

n ∈ {0, . . . , N − 1}. Moreover, if Xe ∈ C4(Ω × [0, T ]), Am ∈ C2(W1,∞(Ω)) and w ∈
C2(H1(Ω)) then un+ 1

2 ∈ H1(Ω) and ||Div un+ 1
2 ||Ω ≤ C(T,v, A)∆t2||w||C2(H1(Ω)),

n ∈ {0, . . . , N − 1}.

Proof. The result follows by writing Taylor expansions in the time variable for w

and the tensor field Ãm(p, s) := detF (p, s)F−1(p, s)A ◦Xe(p, s)F
−T (p, s), s ∈ [0, T ].

Lemma 4.19. Let us assume Hypotheses 1 and 4. Let us suppose that v ∈
C2(T δ), Xe ∈ C4(Ω × [0, T ]) and ∆t < min{η, 1/(2||L||∞,T δ )}, being η the constant
appearing in Lemma 4.1. Let w ∈ L2(Ω) be a given function and un : Ω −→ Rd be
defined by

un(p) := Ãn
m(p)w(p) − Ãn

RK(p)w(p), 0 ≤ n ≤ N.(4.69)

Then, un ∈ L2(Ω) and ||un||Ω ≤ C(T,v, A)∆t2||w||Ω. Moreover, if v ∈ C3(T δ),
Xe ∈ C5(Ω × [0, T ]), A ∈ W2,∞(Oδ) and w ∈ H1(Ω), then un ∈ H1(Ω) and
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||Div un||Ω ≤ C(T,v, A)∆t2||w||1,2,Ω.

Proof. The result follows by applying Taylor expansions, noting that if Xe ∈
C4(Ω × [0, T ]) and v ∈ C2(T δ) then ||Xn

e − Xn
RK ||1,∞,Ω ≤ C(v, T )∆t2, ||(Fn)−T −

(Fn
RK)−T ||∞,Ω ≤ C(v, T )∆t2 and || detFn − detFn

RK ||∞,Ω ≤ C(v, T )∆t2, and if
Xe ∈ C5(Ω × [0, T ]) and v ∈ C3(T δ) then ||(Fn)−T − (Fn

RK)−T ||1,∞,Ω ≤ C(v, T )∆t2

and || detFn − detFn
RK ||1,∞,Ω ≤ C(v, T )∆t2.

Lemma 4.20. Let ϕ ∈ C2(L2(ΓR)) be a given mapping and ξ
n+ 1

2

1 : ΓR −→ R,

ξ
n+ 1

2

2 : ΓR −→ R be defined by

ξ
n+ 1

2

1 (p) := m̃n+ 1
2 (p)ϕn+ 1

2 (p) −
(
m̃n+1(p) + m̃n(p)

2

)(
ϕn+1(p) + ϕn+1(p)

2

)
,

ξ
n+ 1

2

2 (p) := m̃n+ 1
2 (p)ϕn+ 1

2 (p) −
(
m̃n+1(p)ϕn+1(p) + m̃n(p)ϕn(p)

2

)
.

Then ξ
n+ 1

2

1 , ξ
n+ 1

2

2 ∈ L2(ΓR) and

||ξn+ 1
2

1 ||ΓR ≤ ∆t2

8
||m̃ϕ||C2(L2(ΓR)) ≤ C(T,v)∆t2||ϕ||C2(L2(ΓR)),

||ξn+ 1
2

2 ||ΓR ≤ C(T,v)∆t2||ϕ||C2(L2(ΓR)).

Proof. The result follows by using Taylor expansions in the time variable.
Lemma 4.21. Let us assume Hypothesis 1. Let us suppose that v ∈ C2(T δ),

Xe ∈ C4(Ω× [0, T ]) and ∆t < min{η, 1/(2||L||∞,T δ )}, being η the constant appearing
in Lemma 4.1. Let ϕ ∈ L2(ΓR) be a given function and ξn : ΓR −→ R be defined by

ξn(p) := m̃n(p)ϕ(p) − m̃n
RK(p)ϕ(p), 0 ≤ n ≤ N.(4.70)

Then ξn ∈ L2(ΓR) and ||ξn||ΓR ≤ C(T,v)∆t2||ϕ||ΓR .

Proof. The result follows noting that | detFn(p) − detFn
RK(p)| ≤ C(v, T )∆t2

and
∣∣∣∣(Fn)−T (p) − (Fn

RK)−T (p)
∣∣∣∣

2
≤ C(v, T )∆t2.

Lemma 4.22. Let us assume Hypotheses 1. Let us suppose v ∈ C2(T δ), Xe ∈
C4(Ω × [0, T ]) and ∆t < min{η, 1/(2||L||∞,T δ )}, being η the constant appearing in
Lemma 4.1. Let ϕ ∈ H1(Gδ

tn
) be a given function, being Gδ

tn
the set defined in (4.24),

and let ξn : ΓR −→ R be defined by

ξn(p) := m̃n(p)ϕ(Xn
e (p)) − m̃n

RK(p)ϕ(Xn
RK(p)), 0 ≤ n ≤ N.(4.71)

Then ξn ∈ L2(ΓR) and ||ξn||ΓR ≤ C(T,v)∆t2||ϕ||1,2,Gδ
tn

.

Proof. The result follows by applying Taylor expansions, noting that |Xn
e (p) −

Xn
RK(p)| ≤ C(v, T )∆t2, |(Fn)−T (p) − (Fn

RK)−T (p)| ≤ C(v, T )∆t2 and | detFn(p) −
detFn

RK(p)| ≤ C(v, T )∆t2.

Lemma 4.23. Let ϕ ∈ C2(L2(Ω)) be a given function and ξn+ 1
2 : Ω −→ R, for

n ∈ {0, . . . , N − 1}, be defined by

ξn+ 1
2 (p) := detFn+ 1

2 (p)ϕn+ 1
2 (p) − detFn+1(p)ϕn+1(p) + detFn(p)ϕn(p)

2
.
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Then, ξn+ 1
2 ∈ L2(Ω) and

∣∣∣
∣∣∣ξn+ 1

2

∣∣∣
∣∣∣
Ω
≤ ∆t2

8
|| detFϕ||C2(L2(Ω)) ≤ C(T,v)∆t2||ϕ||C2(L2(Ω)).

Proof. The result follows by applying Taylor expansions.
Lemma 4.24. Let us assume Hypothesis 1. Let us suppose that v ∈ C2(T δ),

Xe ∈ C4(Ω × [0, T ]) and ∆t < η, being η the constant appearing in Lemma 4.1.
Let ϕ ∈ H1(Ωδ

tn
) be a given function, being Ωδ

tn
the set defined in (4.9), and let

ξn : Ω −→ R be defined by

ξn(p) := detFn(p)ϕ(Xn
e (p)) − detFn

RK(p)ϕ(Xn
RK(p)), 0 ≤ n ≤ N.

Then ξn ∈ L2(Ω) and ||ξn||Ω ≤ C(T,v)∆t2||ϕ||1,2,Ωδ
tn

.

Proof. The result follows by using Taylor expansions, noting that |Xn
e (p) −

Xn
RK(p)| ≤ C(v, T )∆t2 and | detFn(p) − detFn

RK(p)| ≤ C(v, T )∆t2.
Lemma 4.25. Assume Hypotheses 1, 3 and 4 hold. Moreover, suppose that

Xe ∈ C5(Ω × [0, T ]) and that the coefficients of problem (2.7)-(2.10) satisfy,

v ∈ C3(T δ), ρm ∈ C2(L∞(Ω)), A ∈ W2,∞(Oδ), Am ∈ C2(W1,∞(Ω)).

Let the solution of (4.68) satisfy,

φm ∈ C3(L2(Ω)), ∇φm ∈ C2(H1(Ω)), φm|ΓR ∈ C2(L2(ΓR)).

Finally, assume that ∆t < min{η, 1/(2||L||∞,T δ )}. Then, for each 0 ≤ n ≤ N − 1,

there exist two functions ξ
n+ 1

2

LΩ
: Ω −→ R and ξ

n+ 1
2

LΓ
: ΓR −→ R, such that

〈(
Ln+ 1

2 − Ln+ 1
2

∆t

)
[φ̂m], ψ

〉
=
〈
ξ

n+ 1
2

LΩ
, ψ
〉

Ω
+
〈
ξ

n+ 1
2

LΓ
, ψ
〉

ΓR
,(4.72)

∀ψ ∈ H1
ΓD (Ω). Moreover, ξ

n+ 1
2

LΩ
∈ L2(Ω), ξ

n+ 1
2

LΓ
∈ L2(ΓR) and the following estimates

hold:
∣∣∣
∣∣∣ξn+ 1

2

LΩ

∣∣∣
∣∣∣
Ω
≤ ∆t2C(T,v, ρ, A)

(
||φm||C3(L2(Ω)) + ||∇φm||C2(H1(Ω))

)
,

(4.73) ∣∣∣
∣∣∣ξn+ 1

2

LΓ

∣∣∣
∣∣∣
ΓR

≤ ∆t2C(T,v, A)
(
||∇φm · m||C2(L2(ΓR)) + α||φm||C2(L2(ΓR))

)
,

where α > 0 appears in (2.9).

Proof. The left-hand side of (4.72) is equal to I1 + I2 + I3, with

I1 =

〈
ρ ◦Xn+ 1

2
e detFn+ 1

2

(
φ̇m

)n+ 1
2

, ψ

〉

Ω

−
〈

1

2

(
ρ ◦Xn+1

RK detFn+1
RK + ρ ◦Xn

RK detFn
RK

) φn+1
m − φn

m

∆t
, ψ

〉

Ω

,

I2 =

〈
Ã

n+ 1
2

m ∇φn+ 1
2

m −
(
Ãn+1

RK + Ãn
RK

2

)(∇φn+1
m + ∇φn

m

2

)
,∇ψ

〉

Ω

I3 = α

〈
m̃n+ 1

2φ
n+ 1

2
m −

(
m̃n+1

RK + m̃n
RK

2

)(
φn+1

m + φn
m

2

)
, ψ

〉

ΓR

.
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The bound for I1 directly follows from Lema 4.17 for ϕ = φm, so we can define a

function ξ
n+ 1

2

I1
∈ L2(Ω) such that

I1 =
〈
ξ

n+ 1
2

I1
, ψ
〉

Ω
, with

∣∣∣
∣∣∣ξn+ 1

2

I1

∣∣∣
∣∣∣
Ω
≤ C(T,v, ρ)∆t2||φm||C3(L2(Ω)).(4.74)

In order to estimate I2 we apply Lemmas 4.18 and 4.19 for w = ∇φm and w =

∇φn+1
m + ∇φn

m, respectively, so I2 =
〈
u

n+ 1
2

I2
,∇ψ

〉
Ω
, with u

n+ 1
2

I2
∈ H1(Ω). Then, by

using a Green’s formula, we deduce

I2 =
〈
u

n+ 1
2

I2
· m, ψ

〉
ΓR

−
〈

Div u
n+ 1

2

I2
, ψ
〉

Ω
,

where, the involved functions are bounded as follows:

∣∣∣
∣∣∣un+ 1

2

I2
·m
∣∣∣
∣∣∣
ΓR

≤ C(T,v, A)∆t2||∇φm ·m||C2(L2(ΓR)),
(4.75) ∣∣∣

∣∣∣Div u
n+ 1

2

I2

∣∣∣
∣∣∣
Ω
≤ C(T,v, A)∆t2||∇φm||C2(H1(Ω)).

The estimate for I3 follows by applying Lemmas 4.20 and 4.21 for ϕ = αφm|ΓR and
ϕ = α(φn+1

m + φn
m)|ΓR , respectively:

I3 =
〈
ξ

n+ 1
2

I3
, ψ
〉

ΓR
with

∣∣∣
∣∣∣ξn+ 1

2

I3

∣∣∣
∣∣∣
ΓR

≤ C(T,v)α∆t2||φm||C2(L2(ΓR)).(4.76)

Finally, partial results (4.74), (4.75) and (4.76) imply (4.72).
Lemma 4.26. Assume Hypothesis 1, and v ∈ C2(T δ), Xe ∈ C4(Ω × [0, T ])

and ∆t < min{η, 1/(2||L||∞,T δ )}, being η the constant appearing in Lemma 4.1. Let
fm ∈ C2(L2(Ω)), f ∈ C1(T δ), gm ∈ C2(L2(ΓR)), g ∈ C1(T δ

ΓR). Then, for each

n ∈ {0, . . . , N − 1}, there exist ξ
n+ 1

2

f : Ω −→ R and ξ
n+ 1

2
g : ΓR −→ R, satisfying

〈(
Fn+ 1

2 − Fn+ 1
2

∆t

)
, ψ
〉

=
〈
ξ

n+ 1
2

f , ψ
〉

Ω
+
〈
ξ

n+ 1
2

g , ψ
〉

ΓR
∀ψ ∈ H1(Ω).(4.77)

Moreover, ξ
n+ 1

2

f ∈ L2(Ω) and ξg ∈ L2(ΓR) and the following estimates hold:

∣∣∣
∣∣∣ξn+ 1

2

f

∣∣∣
∣∣∣
Ω
≤ ∆t2C(T,v, T δ)

(
|| detFfm||C2(L2(Ω)) + ||f ||C1(T δ)

)
,

(4.78) ∣∣∣
∣∣∣ξn+ 1

2
g

∣∣∣
∣∣∣
ΓR

≤ ∆t2C(T,v, T δ
ΓR)

(
||m̃gm||C2(L2(ΓR)) + ||g||C1(T δ

ΓR
)

)
.

Proof. The proof follows from Lemmas 4.20, 4.22, 4.23 and 4.24.

Hypothesis 9. Functions appearing in problem (2.7)-(2.10) satisfy:
• ρm ∈ C2(L∞(Ω)), A ∈ W2,∞(Oδ), Am ∈ C2(W1,∞(Ω)),
• v ∈ C3(T δ),
• fm ∈ C2(L2(Ω)), f ∈ C1(T δ), gm ∈ C2(L2(ΓR)), g ∈ C1(T δ

ΓR) and α > 0.
Hypothesis 10. Functions appearing in problem (2.7)-(2.10) satisfy:
• ρm ∈ C2(L∞(Ω)), A ∈ W2,∞(Oδ), Am ∈ C3(W1,∞(Ω)),
• v ∈ C3(T δ),
• fm ∈ C2(L2(Ω)), f ∈ C1(T δ), gm ∈ C3(L2(ΓR)), g ∈ C2(T δ

ΓR) and α > 0.



26 M. BENÍTEZ AND A. BERMÚDEZ

Lemmas in this section hold under Hypotheses 1, 3 and 4 and the previous ones.

Theorem 4.27. Assume Hypotheses 1, 3, 4, 5, 6, 7 and 9, and Xe ∈ C5(Ω ×
[0, T ]). Let

φm ∈ C3(L2(Ω)), ∇φm ∈ C2(H1(Ω)), φm|ΓR ∈ C2(L2(ΓR)),

be the solution of (4.68) and let φ̂m,∆t be the solution of (4.28) subject to the initial
value φ0

m,∆t = φ0
m = φ0 ∈ H1(Ω). Then, there exist two positive constants J and D,

the latter being independent of the diffusion tensor, such that, if ∆t < D we have

√
γ|| ̂√

detFRK (φm − φm,∆t)||l∞(L2(Ω))

+

√
Λ

4

∣∣∣∣
∣∣∣∣

̂
B̃RKS [∇φm −∇φm,∆t]

∣∣∣∣
∣∣∣∣
l2(L2(Ω))

+

√
α

8

∣∣∣∣
∣∣∣∣

̂√
S [m̃RK ]S [φm − φm,∆t]

∣∣∣∣
∣∣∣∣
l2(L2(ΓR))

≤ J ∆t2
(
||φm||C3(L2(Ω))

+||∇φm||C2(H1(Ω)) + ||∇φm · m||C2(L2(ΓR)) + ||φm||C2(L2(ΓR))

+|| detFfm||C2(L2(Ω)) + ||f ||C1(T δ) + ||m̃gm||C2(L2(ΓR)) + ||g||C1(T δ

ΓR
)

)
.

(4.79)

Proof. We denote by êm,∆t the difference between the continuous and the discrete

solution, that is, êm,∆t =
{
φn

m − φn
m,∆t

}N

n=0
. Then, by using (4.28) and (4.68) we have

〈
Ln+ 1

2

∆t [êm,∆t], ψ
〉

=
〈(

Ln+ 1
2

∆t − Ln+ 1
2

)
[φ̂m], ψ

〉
+
〈
Fn+ 1

2 −Fn+ 1
2

∆t , ψ
〉
,(4.80)

∀ψ ∈ H1
ΓD (Ω) and 0 ≤ n ≤ N − 1. Then, as a consequence of Lemmas 4.25 and 4.26,

we deduce

〈
Ln+ 1

2

∆t [êm,∆t], ψ
〉

=
〈
ξ

n+ 1
2

f − ξ
n+ 1

2

LΩ
, ψ
〉

Ω
+
〈
ξ

n+ 1
2

g − ξ
n+ 1

2

LΓ
, ψ
〉

ΓR
,(4.81)

∀ψ ∈ H1
ΓD (Ω). Now the result follows by applying Theorem 4.11 to (4.81), noting

that e0m,∆t = 0 and using the upper bounds for ξLΩ
, ξf , ξLΓ

and ξg given in Lemmas
4.25 and 4.26.

Remark 4.10. Notice that constant J appearing in the previous theorem is
bounded in the limit when the diffusion tensor vanishes. In particular, Theorem
4.27 is also valid when A ≡ 0.

Theorem 4.28. Let us assume Hypotheses 1, 3, 4, 5, 6, 7 and 10, and Xe ∈
C5(Ω × [0, T ]). Let φm with

φm ∈ C3(L2(Ω)), ∇φm ∈ C3(H1(Ω)), φm|ΓR ∈ C3(L2(ΓR)),

be the solution of (4.68) and φ̂m,∆t be the solution of (4.28) subject to the initial value
φ0

m,∆t = φ0
m = φ0 ∈ H1(Ω). Then, there exist two positive constants J and D such
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that, for ∆t < D we have

√
γ

4

∣∣∣∣
∣∣∣∣

̂√
S[ detFRK ]R∆t[φm − φm,∆t]

∣∣∣∣
∣∣∣∣
l2(L2(Ω))

+

√
Λ

2

∣∣∣∣
∣∣∣∣

̂
B̃RK (∇φm −∇φm,∆t)

∣∣∣∣
∣∣∣∣
l∞(L2(Ω))

+

√
α

4

∣∣∣∣
∣∣∣∣

̂√
m̃RK (φm − φm,∆t)

∣∣∣∣
∣∣∣∣
l∞(L2(ΓR))

≤ J ∆t2
(
||φm||C3(L2(Ω))

+||∇φm||C2(H1(Ω)) + ||∇φm · m||C3(L2(ΓR)) + ||φm||C3(L2(ΓR))

+|| detFfm||C2(L2(Ω)) + ||f ||C1(T δ) + ||m̃gm||C3(L2(ΓR)) + ||g||C2(T δ

ΓR
)

)
.

(4.82)

Proof. It is analogous to the one of the previous theorem, but using Theorem 4.15
instead of Theorem 4.11 and noting that

∣∣∣
∣∣∣ ̂R∆t[ξLΓ

]
∣∣∣
∣∣∣
l2(L2(ΓR))

+
∣∣∣
∣∣∣R̂∆t[ξg]

∣∣∣
∣∣∣
l2(L2(ΓR))

≤ C̃∆t2
(
||∇φm · m||C3(L2(ΓR))

+ ||φm||C3(L2(ΓR)) + ||m̃gm||C3(L2(ΓR)) + ||g||C2(T δ

ΓR
)

)
.

This estimate follows by using Taylor expansions and

∣∣(Xn+1
e (p) −Xn+1

RK (p)
)
− (Xn

e (p) −Xn
RK(p))

∣∣ ≤ C̃∆t3,
∣∣((Fn+1)−1(p) − (Fn+1

RK )−1(p)
)
−
(
(Fn)−1(p) − (Fn

RK)−1(p)
)∣∣ ≤ C̃∆t3,

∣∣( detFn+1(p) − detFn+1
RK (p)

)
− ( detFn(p) − detFn

RK(p))
∣∣ ≤ C̃∆t3.

Remark 4.11. In the particular case of diffusion tensor of the form A = ǫB with
ǫ > 0, constants J and D appearing in the previous theorem are bounded as ǫ→ 0.

Remark 4.12. Notice that, from the obtained estimates and by using a change
of variable, we can deduce similar ones in Eulerian coordinates (see [6] for further
details).

5. Conclusions. We have performed the numerical analysis of a second-order
pure Lagrangian method for convection-diffusion equations with degenerate diffusion
tensor and non-divergence-free velocity fields. Moreover, we have considered general
Dirichlet-Robin boundary conditions. The method has been introduced and analyzed
by using the formalism of continuum mechanics. Although our analysis considers any
velocity field and use approximate characteristic curves, second order error estimates
have been obtained when smooth enough data and solutions are available. In the
second part of this paper ([7]), we analyze a fully discretized pure Lagrange-Galerkin
scheme and present numerical examples showing the predicted behavior (see also [6]).
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