
Mathematical modelling of pulverized coal furnaces

Resumen

The aim of this paper is to set and numerically solve a system of equations

that models the processes that occur into a pulverized coal furnace. A simple

combustion model consisting of six chemical reactions including vaporization

and volatilization is introduced. We use Eulerian coordinates for the gas phase

and Lagrangian ones for the solid phase. Low Mach number techniques are

used to solve the equations for the gas-phase flow. We consider compressible

Navier-Stokes equations with the Smagorinsky’s model for turbulence. We

consider convection, diffusion and radiation heat transfer phenomena. Radia-

tion heat transfer is taken into account by solving the total radiation intensity

equation by a six-flux method. Finite element methods are employed to solve

the equations of the stablished model. We incorporate the characteristics

method to solve the nonlinearity coming from the convective terms. An iter-

ative algorithm to solve the highly coupled problem is proposed. Numerical

results for aerodynamics, radiation and combustion of a coal particle obtained

for some industrial furnaces are shown.

1 Introduction

The limitations of the energy resources and, on the other hand, the pollutant emis-
sion regulations have led to the need of optimizing the design of combustion equip-
ment. Together with these limitations all combustors should satisfy the follow-
ing requirements: high combustion efficiency, uniformity of outlet gas temperature
maximizing the life of the chamber, low pressure loss, reliable and smooth ignition,
durability and minimum cost.

The improvement of the performance and the need to satisfy all the listed re-
quirements have promoted the mathematical modelling with subsequent simulation
to increase the knowledge about the combustion phenomena because they are easily,
quickly and economically adaptable to different geometric configurations and load
conditions.

Several studies about the simulation of behavior models in pulverized coal boilers
can be seen in [27], [2], [1], [26] and [34].

In this report a mathematical model for the numerical simulation of the pulverized
coal combustion in the boiler of a power plant is described and solved.

First the general structure of the process is analyzed. Then the model equations
are detailed: those of the solid phase, including a combustion model for the coal
particles developed by us (see [6] and [5]) and the gas phase ones.

The equations are grouped in submodels corresponding to the different physico-
chemical phenomena involved in the process. For each of them the methods em-
ployed for numerical solution are exposed in a summarized way.
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The solid phase model is a system of ordinary differential equations which is
solved by using an one step finite difference method (implicit Euler). Furthermore
numerical non-linear equations appear that are solved by using Newton’s method.

The resolution of the gas phase equations is much more difficult because of its
complexity. The momentum equation is a non-linear system of partial differential
equations. We consider a mixed variational formulation in velocity/pressure, which
is solved by using a tetrahedral finite element method of the P1-bubble type for
the velocity components and P1 for the pressure. To deal with the non-linearity
appearing in the convective term a discretization by characteristics is used. Because
of the properties of the problem we are led to a system where the three components
of the velocity are not coupled. It is solved through a conjugated gradient method,
preconditioned with the Cahouet matrix (see [10] and [13]).

Another difficulty arises when solving the energy conservation equation due to the
importance of the thermal radiation in the heat transfer phenomena. This makes
necessary to include the equation of the energy transport by radiation in the model.
The resolution of the energy equation is accomplished by using a tetrahedral P1 finite
element method, combined with characteristics for the treatment of the convective
term. For solving the radiation intensity equation a six-flux method is used for the
discretization of the direction variable, while for spatial variables a finite difference
method having the particularity of reducing the three-dimensional problem to a
collection of monodimensional ones is introduced.

For the numerical computation of the mass fractions of the chemical species we
solve the conservation equations by using a piecewise linear finite element method
with a tetrahedral mesh. The characteristics method is also used for the treatment
of the convective term.

In the last part of the report reference is made to the algorithm for the whole
model, that it has been implemented in a computer through a FORTRAN program.
Finally, graphic output is included with the results obtained for data supplied by
the Electric Power Plant of ENDESA (As Pontes).

The analysis of the results given by numerical simulation permits to know the be-
havior of the boiler and to judge whether they are satisfactory or, on the contrary,
it presents aspects to be improved. Then successive executions of the simulation
program, incorporating changes in the operating conditions or in the boiler design,
would make possible the correction of the detected defects and, in fact, the opti-
mization of the process.
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2 The combustion process

2.1 General description

First we describe the combustion process beginning by the geometric domain where
it takes place.

The structure of a furnace of the Electric Power Plant of ENDESA (As Pontes)
can be seen in the figure 1.

Figura 1: Scheme of the furnace

At given levels inlets exist through which recycled gases are introduced and they
drag the pulverized coal, together with fresh air.

Also, some openings exist for the rising of the recirculating gases to the “resuction
ducts”, which can be in the zone of the fireplace or higher up. Figure 1 shows a
furnace where the resuction ducts are out of the fireplace in the zone called “con-
vective”. As our interest is centered in the zone where burners are located, we will
delimit the geometric domain through an imaginary horizontal plane, across which
gases leave the fireplace on the way to the convective zone.

The present model only pretends to study what happens in the fireplace. Further-
more we will suppose that the zone of the fireplace is a spatial area in parallelopiped
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form.
As it was previously said, pulverized coal goes into the boiler mixed with recir-

culating gases at a temperature of 300oC approximately. Preheated fresh air is also
introduced.

In a first stage evaporation of coal moisture and release of volatiles (pyrolysis)
takes place. The latter will be burnt in the gas phase. Then combustion of free
carbon in the residual char will take place, through a complex chemical process that
occurs, first in the surface of the particle and, then, in the gas close to it.

Finally ash remains which, either is deposited in the bottom (and it is taken out
through the grid), or leaves the fireplace with the combustion gases and is filtered
before the exit of these by the chimney, toward the atmosphere.

The important flows of recirculating gases and fresh air determine speeds larger
than 10 m/s. As coal particles are dragged by the gas in their motion, it is under-
stood that aerodynamics is going to determine the flame position; therefore a good
knowledge of it becomes fundamental, if we want to simulate precisely the boiler
operation.

To this respect fits to indicate that, given the orders of magnitude of the pro-
cess, the characteristic Reynolds number can be larger than 107, something which
states that flow is turbulent; this adds greater difficulties to modelling. On the
other hand, the temperature variation that gases undergo in the boiler determines
important changes in their density, so that the flow is compressible. As it is known,
turbulence and compressibility lead to complex models and, consequently, to great
computational problems.

On the other hand, the existence of two phases causes the model is composed
of two differentiated submodels, though coupled between them. The first one de-
scribes, in Eulerian coordinates, the mass, momentum and energy conservation of the
gases. The second one, that will be expressed in Lagrangian coordinates, translates
the conservation laws for coal particles and contains, in particular, the combustion
model.

The coupling of both submodels is produced by the following reasons:

• flow of the gas phase determines the position of the particles and the surround-
ing conditions for the combustion (density, temperature, oxygen and carbon
dioxide concentrations, etc.).

• particles act as sources of mass, momentum and energy for the gas phase.

Finally we mention an other important difficulty, which is the fact that heat
transfer to the water walls is due, to a great extent, to thermal radiation. This
fact forces to introduce the equation of thermal radiation intensity in the model,
with the purpose of calculating the corresponding fluxes that appear in the energy
equations, both in the gaseous phase and in the coal particles.
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2.2 Involved phenomena and main difficulties

Summarizing, the phenomena that characterize the combustion process of the pul-
verized coal in the fireplace of the boiler of a power plant are the following:

1. Entry of coal particles mixed with recirculating gases and fresh air.

2. Motion of coal particles dragged by gas phase.

3. Moisture evaporation of coal particles.

4. Partial volatilization of coal particles.

5. Combustion of volatilizated gases.

6. Combustion of residual coal (char).

7. Heat transportation by radiation to the water wall.

8. Heat transportation by convection to the higher part of the boiler.

From the analysis of these phenomena we immediately deduce that the funda-
mental difficulties when modelling the process are the following:

1. Presence of two phases: solid (coal particles) and gaseous.

2. Complex aerodynamics (compressible and turbulent flows).

3. Heat transportation by radiation.

4. Combustion of coal particles (heterogeneous).

5. Coupling of phenomena.

2.3 Mathematical model

A mathematical model, based on the laws of physics, should include the following
equations:

Solid phase







































motion • dynamics of a particle

combustion • mass conservation of the components

• energy conservation

• kinetics of the chemical reactions
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Gas phase











































































aerodynamic • mass conservation

• momentum conservation

• energy conservation

• thermal radiation

• state equation

combustion • mass conservation of the species

As we will see below, the corresponding equations to the solid phase are ordinary
differential equations, while the ones for the gas phase are partial differential equa-
tions, since the values of the physical magnitudes depend on the position. However
they will be time independent since we consider the boiler in stationary state. To
proceed to their integration it is necessary to supply boundary conditions, that ex-
press entry and exit of mass, momentum and energy. These boundary conditions
will be calculated through preprocessing programs, from the operating parameters
of the boiler supplied by the manager.

By solving these equations at each point of the boiler the values of the physical
magnitudes that define the process will be obtained. More precisely:

Solid phase















































motion position and velocity of the particles

kinetic mass of each species in the particle,
sources of mass to the gas phase

energy temperature of the coal particles,
sources of energy to the gas phase

Gas phase























































































cons. momentum velocity, pressure

cons. mass divergence of the velocity

cons. energy temperature, heat to water walls

thermal radiation radiation flux to water walls

cons. of species mass fractions

state equation density
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3 Solid phase

In this section we introduce the equations corresponding to the solid phase, that
is, to coal particles. It is a Lagrangian model, so it establishes what occurs to each
particle in its motion through the boiler, instead of what happens in a point, anyone
but fixed, of it.

First we have the motion equations. Particles are dragged by the gas, and the
gravitational force acts on them.

When they arrive to the interior of the boiler and receive heat by conduction and
radiation, particles are heated and then a process consisting of evaporation of their
moisture, release of volatiles and oxidation of the resulting char starts. This produces
increasing of their temperature and decreasing of mass until they are reduced to inert
ash.

We have developed a mathematical model to simulate this combustion process,
that improves and completes some other existing in the bibliography on the topic
(see [17], [16], [19] or [24]). As usually, it is a simplified model that considers global
chemical reactions; however we think that it is adequate, in view of the type of
process to be modelled and because of the lack of data to consider more complex
combustion mechanisms. In any case, the methodology employed for getting the
equations is very general and it could be adapted without great difficulties to include
other reactions.

3.1 Model of pyrolysis/combustion

This model is composed of heterogeneous reactions that take place in the solid-gas
interphase, and homogeneous reactions in the gas phase including combustion of
the volatiles and of the carbon monoxide produced by the oxidation of the char.
We will suppose that combustion reaction of the volatiles is equivalent to the global
combustion reaction of a single molecule V = CaHbOcSd.

1. Heterogeneous reactions (at the solid-gas interphase)

• moisture evaporation:

H2O(s) → H2O(g) + (q5) (1)

• volatilization:

coal→ V(g) + (q4) (2)

• char oxidation (gasification):

– carbon oxidation by the carbon dioxide on the particle surface with
production of carbon monoxide:

CO2 + C → 2 CO + (q1) (3)
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– carbon oxidation by the oxygen:

1

2
O2 + C → CO + (q2) (4)

2. Homogeneous reactions

• combustion of volatiles:

CaHbOcSd + α O2 → β CO2 + γ H2O + ζSO2 + (q6) (5)

(α = 2a+b/2+2c−d
2

, β = a, γ = b
2

y ζ = d)

• combustion of carbon monoxide:

CO +
1

2
O2 → CO2 + (q3) (6)

As it was previously said, this combustion model forms a part of a Lagrangian
model that follows the evolution of each particle in the interior of the boiler.

Corresponding equations are exposed below. More details, especially about the
derivation of the equations, can be seen in references [6] and [5]. For the validity
of those equations the hypothesis that Lewis number of the reactants is unity was
considered, though this is only necessary to obtain the temperature equation.

A model corresponding to consider solely the combustion reactions of the carbon,
that is, those described in (3), (4) and (6) is obtained in [6]. First a model when
the reaction in gas phase (6) is infinitely fast is obtained. Furthermore two cases
are considered according to the flame being contiguous to the particle surface or
separated from it. Then it is supposed that such reaction is not produced (reaction
in gas phase is frozen).

This model (and the methodology to obtain it is extended in [5] to a most complex
situation where the reactions of evaporation (1), volatilization (2) and combustion
of released volatiles (5) are also included. It is also supposed that the combustion
reaction of volatiles is infinitely fast or frozen.

The meaning of each variable can be seen in the notation table appearing at the
end of this report.

3.2 Equation for each particle

Below we show conservation equations of the solid phase. It is customary to assume
in modelling of pulverized coal combustion that particles are burnt uniformly on its
surface.

The model below extends that obtained by Libby and Blake [17] to a more gen-
eral kinetic situation including moisture evaporation and volatilization. The same
methodology that Liñán [18] is used, that is, asymptotic analysis for the limit case
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of high activation energy. More references on this topic are [16], [22], [23], [24], [20],
[21] or [19].

Furthermore, we consider that particle with radius δs (see figure 2) is porous, that
is, it does not reduce its size when is burnt but makes it through pores.

Figura 2: Coal particle

Because reactions in gas phase are supposed to be infinitely fast a “diffusion
flame” is produced (i.e., it is determined by the oxygen arrival by diffusion from
the surrounding gas) at a distance rf of the center of the particle. In the case of
separated flame sheet (rf > δs) we have a situation as in the figure 3.

Figura 3: Separated diffusion flame

1. Motion equation

In the study of the motion of the pulverized coal particles only gravity and
aerodynamic drag forces are meaningful (see [32] or [33]). Then under the
hypothesis of particles have spherical form and they are not fragmented during
combustion, the following equations result for the motion (see [32]):

ms
dvs

dt
= ms

3

16

µg

ρsδ2
s

CDRe(v − vs) +msg (7)

dxs

dt
= vs (8)
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where Re, the Reynolds number based in the relative velocity of the particle
as constrasted with the gas one, and CD are given by

Re = ρg | v − vs |
2δs
µg

CD =











1 + 0.15Re0.687

Re/24
if Re ≤ 1000

0.44 other case

with initial conditions:

vs(0) = vs0

xs(0) = xs0

2. Equations for the mass of the particle constituents

By matter balance, the mass of each constituent of the particle can be related
to the reaction rates, where these are defined as the mass of substance that
reacts per unit volume and time. Furthermore it is considered that ash is an
inert species, that is, it does not react. Then equations for the mass of the
particle constituents are written as (see [32])

dρH2O

dt
= −B5e

−
E5

RTs ρH2O = −
3k

δ2
scp

λ5 (9)

dρV

dt
= −B4e

−
E4

RTs ρV = −
3k

δ2
scp

λ4 (10)

dρC

dt
= −

3k

δ2
scp

[λ1 + λ2] (11)

ρs = ρH2O + ρV + ρC + ρash

where λi =
ṁicc
kδs

is the notation for i reaction rate, and with initial conditions:

ρH2O(0) = ρ0
H2O

ρV (0) = ρ0
V

ρC(0) = ρ0
C

ρs(0) = ρ0
s
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3. Equations for the combustion rates of the char

By integrating the classic linear combinations of the quasi-stationary conser-
vation equations for the gas phase we obtain the equations written below. The
fact that Shvab-Zeldovich coupled functions follow the same conservation laws
as a passive scalar is used for this. Furthermore, as it was already said, it was
assumed that reactions in gas phase are infinitely fast. For more details on
the methodology employed in the derivation of these equations see [5].

Though for the validity of equations of the reaction rates it is not necessary,
assumption of Lewis number of the reactants equals to one is made because it
is necessary to obtain the energy conservation equation given below.

The case f ≤ 1 or eλ ≤ f, corresponds to the flame contiguous to the particle
surface, while the other case corresponds to the flame separated from it.

We have (see [5]):

(a)

λ1 = K1F1(λ1, λ2, λ4, λ5) (12)

λ2 = K2F2(λ1, λ2, λ4, λ5) (13)

(b)

F1 =
1

λ

(

Y1gλe
−λ +

11

3
[λ1 + λ2] +

44β

Mvol
λ4 − (

11

3
[λ1 + λ2] +

44β

Mvol
λ4)e

−λ

)

F2 =
1

λ

(

Y2gλe
−λ −

8

3
[λ1 + λ2]−

32α

Mvol
λ4 − (−

8

3
[λ1 + λ2]−

32α

Mvol
λ4)e

−λ
)

if f ≤ 1 or eλ ≤ f,

F1 =
1

λ

(

Y1gλe
−λ +

11

3
[λ1 + λ2] +

44β

Mvol

λ4 − (
11

3
[λ1 + λ2] +

44β

Mvol

λ4)e
−λ

−(
22

3
λ1 +

11

3
λ2 +

44β

Mvol
λ4)(1− e

−λf)

)

F2 =
1

λ

(

Y2gλe
−λ −

8

3
[λ1 + λ2]−

32α

Mvol
λ4 − (−

8

3
[λ1 + λ2]−

32α

Mvol
λ4)e

−λ

−(−
8

3
λ1 −

4

3
λ2 −

32α

Mvol
λ4)(1− e

−λf)
)

otherwise.

(c)

λ = λ1 + λ2 + λ4 + λ5
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(d)

f = 1 +
Y2gλ

8
3
[λ1 + λ2] + 32α

Mvol
λ4

(e)

Ki = Bie
−

Ei
RTs ρg

Tg

Ts

δscp
k
, i = 1, 2

4. Energy conservation of the particle

Below we write the equation of the energy balance where conduction, con-
vection and radiation are considered as forms of energy transportation. The
equation is obtained with the same procedure that equations of conservation
of species. For this hypothesis of uniform temperature of the particle, that is
spatially constant in all the particle, is made.

cs
d(msTs)

dt
= 4πδsk

{

(Tg − Ts)
λ

eλ − 1
+ [

q3
cp

(
14

3
λ1 +

7

3
λ2) +

q6
cp
λ4]

}

+
4πδsk

cp

5
∑

i=1
i6=3

qiλi + 4πδ2
sξ
(
∫

S2

IdS(ω)− σT 4
s

)

+ csTs
dms

dt

if f ≤ 1 or eλ ≤ f,

cs
d(msTs)

dt
= 4πδsk

{

(Tg − Ts)
λ

eλ − 1
+ [

q3
cp

(
14

3
λ1 +

7

3
λ2) +

q6
cp
λ4]

f − 1

eλ − 1

}

+
4πδsk

cp

5
∑

i=1
i6=3

qiλi + 4πδ2
sξ
(
∫

S2

IdS(ω)− σT 4
s

)

+ csTs
dms

dt

otherwise.

with the initial condition:

Ts(0) = Ts0

3.3 Computation of sources for the gas phase

When we integrate the motion and the combustion model of coal particles in the
fireplace we obtain the sources of mass (total and for each species) and energy (total
and radiant) going from the solid phase to the gas phase per unit time.
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Pulverized coal contains particles with different sizes moving and burning in a
different way. Granulometric analysis provides us the size distribution, i.e. the
number of types and, for each type, the mean radius and the percentage in weight.

If we denote Nt the number of types, Ne the number of inlets in the fireplace, Qj

the mass flow of coal introduced through the inlet j ([kg/s]) and pij the percentage
of particles of type i in coal, then the expression of the source of mass to the gas
per unit volume and time ([kg/(m3s)]) is given by:

fm(x) =
Ne
∑

j=1

Nt
∑

i=1

Qj
pij

100

∫ tf
ij

0
F ij

m (t)δ(x− xij
s (t))dt

Analogous expressions to the former, we denote respectively by fO2
, fCO2

, fH2O

and fSO2
, are obtained for the sources of the species O2, CO2, H2O and SO2.

The corresponding expressions of function F , taking into account the dependence
on the particle type (radius) and on the inlet, are (see [5]:

•

Fm(t) =
4πδsk

cp
λ(t) =

4

3
πδ3

s

dρs

dt

•

FO2
(t) =

4πδsk

cp

(

−
8

3
[λ1(t) + λ2(t)]−

32α

Mvol

λ4(t)
)

•

FCO2
(t) =

4πδsk

cp

(

11

3
[λ1(t) + λ2(t)] +

44β

Mvol

λ4(t)

)

•

FH2O(t) =
4πδsk

cp

(

λ5(t) +
18γ

Mvol
λ4(t)

)

•

FSO2
(t) =

4πδsk

cp

64ζ

Mvol
λ4(t)

Next we write the energy source. Energy that one particle transfers to the ambient
gas by conduction and convection, per unit time, is (see [5]):

Fe(t) = 4πδsk

{

(Ts − Tg)
λ

eλ − 1
+ (1− γ)

[

q3
cp

(
14

3
λ1 +

7

3
λ2) +

q6
cp
λ4

]}

− csTs
dms

dt
,

where
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γ =



















1 if f ≤ 1 or eλ ≤ f,

f − 1

eλ − 1
other case.

With regard to the emitted radiant energy we have the expression:

Fre(t) = 4πδ2
sξσTs(t)

4.

Finally, the radiant energy absorbed by the particle and transformed into internal
energy is

Fra(t) = 4πδ2
sξ
∫

S2

IdS(ω).

3.4 Numerical solution

The model of the solid phase that we have described consists of a set of ordinary
differential equations and non-linear equations to determine the combustion rates.

An one step implicit finite difference method has been used for numerical solution.
In each step, we have to solve a non-linear equation (for the temperature) and a
system (for λ1 and λ2). This is done by using the Newton’s method. Next we detail
these methods and equations where they have been used.

The numerical solution of the mass conservation equations (9) and (10) is made
with an one step implicit finite difference method, namely

ρn+1
A − ρn

A

∆t
= −Bie

−Ei/RT n
s ρn+1

A ⇒ ρn+1
A = ρn

A

1

1 + ∆tBie−Ei/RT n
s

where A=H2O or V and i=4 ó 5, respectively. The same equations give us the
combustion rates of evaporation and volatilization reactions λi, as

λn+1
i = −

ρn+1
A − ρn

A

∆t

δ2
scp
3k

The computation of combustion rates of the char is made by solving the non-linear
algebraic system (12) and (13) through the Newton’s method, and then we obtain
a sequence {λn+1,k}k that converges to the solution of the system λn+1, namely

λn+1,k+1 = λn+1,k − (Dg(λn+1,k))−1g(λn+1,k)

where

λ = (λ1, λ2)

g(λ) = (λλ1 −K1λF1(λ1, λ2), λλ2 −K2λF2(λ1, λ2))

and Dg(λn,k) is the jacobian matrix of g in λn,k.
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Once we have the combustion rates of the char we just can solve the carbon density
in the particle by using the equation (11), through the one step finite difference
method

ρn+1
C = ρn

C −∆t
3k

δ2
scp

(λn+1
1 + λn+1

2 )

For the solution of the energy equation for one particle, we use again an one step
implicit finite difference method. The difficulty arises from the fact that Ts is the
solution of a non-linear equation, because of the fourth-degree term that appears in
the thermal radiation; more precisely, we get

a(T n+1
s )4 + bT n+1

s = c

where a, b and c are expressions, arising from the energy equation and from the
discretization of the time derivative. Because of this we use the Newton’s method
to approximate the solution; we have

T k+1
s =

3a(T k
s )4 + c

b+ 4a(T k
s )3

Finally the ordinary differential equations (7) and (8) are integrated exactly. For
this is enough to suppose constant gas velocity over the short period of time of
integration of the equation. In this case equation (7), which determines the velocity
of the particle, can be integrated formally to give

vs = v − (v − vs0)e
−∆t/τ + gτ(1− e−∆t/τ )

where τ is the characteristic time defined by

τ =
ρsδ

2
s

18µgf

and

f =
CDRe

24
.
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4 Gas phase

In this section we describe the different submodels used to simulate the flow of
gases in the boiler. They are the related to aerodynamics, energy transfer and mass
transfer of the different species.

4.1 Aerodynamic

Aerodynamics constitutes certainly one of the most difficult and important parts of
the model.

We recall that, because of the existence of zones with different temperature, im-
portant changes in density of the gases are produced, therefore it is necessary to use
a compressible model.

On the other hand, high Reynolds number states that flow is turbulent. To
take into account this feature, and with the purpose of calculating the effective
viscosity, we have used a turbulence model; more precisely Smagorinsky’s model due
to its simplicity and reduced computational cost. The incorporation of other more
complex models, as the classic k − ǫ, should be made without greater difficulties.

Finally one may highlight that, because Mach number is low, the approximation of
“isobaric” model can be considered, that is, it is possible to suppose that pressure
is spatially homogeneous in the state equation. This simplification, usual in this
type of combustion problems, allows us to eliminate the acoustics waves and, as we
will see, to adapt the numerical techniques developed for numerical computation of
incompressible flows.

4.1.1 Equations of the model

1. Conservation of the mass

∇ · (ρ~v) = fm (1)

2. Conservation of the momentum

ρ~v∇~v −∇·
=
τ (x, t) +∇p = fm(vs − ~v) + ρg (2)

where

=
τ (x, t) = −

2

3
µe(∇ · ~v)

=

I +µe(∇~v + (∇~v)t)

3. State equation

p = ρRT (3)
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where R is the gas constant, given by

R =
R

M

and M the molecular mass of the mixture, that is,

1

M
=

nsp
∑

i=1

Yi

Mi

4. Boundary conditions

~v = ve (inlets and grill),

~v = 0 (walls).

4.1.2 Turbulence model

We use the Smagorinsky’s model (introduced in [31]), where the turbulent viscosity
is calculated through the formula:

µt = ρcĥ2 | ∇~v +∇~vt |

4.2 “Low Mach number” approximation

As already said, because velocities of gases in the boiler are small with respect to
the velocity of sound, pressure can be considered, in a first approximation, spatially
homogeneous. This means that in the state equation, (but not in the momentum
one), pressure can be considered constant and equal to a given fixed value p̄ (in the
case of the ENDESA power plant at As Pontes this value is slightly lower than the
atmospherical pressure).

This simplification allows us to obtain the density, if we know the temperature
and the mass fractions, through the formula:

ρ =
p̄

RT
=
constante

RT
.

Once density is calculated we solve the conservation equations of mass and mo-
mentum and we obtain the velocity and pressure fields. The advantage that provides
the “isobaric” character of the flow is that to solve these equations, methods de-
veloped for incompressible aerodynamics can be used, after some adjustments; it
eliminates problems associated with the presence of acoustic waves.
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4.2.1 Numerical methods

Once density and divergence of the velocity are known, the solution of the mo-
mentum conservation equation has been carried out through a computer program,
implementing finite element methods and using recent algorithms. This program
is of general application and therefore it can be used for flow calculations in other
situations. In particular, geometry is completely general.

Although details are provided in references [9] and [7], we collect here, in a reduced
way, the main features of the employed methods:

• Time discretization of the convective term ρ~v∇~v in the equation (2) by the
characteristics method. More precisely is approximated by

~vn+1(x)− ~vn(Xn(x))

∆t

where Xn(x) = χn(x, tn+1; tn), and χn(x, t; s) gives the position at time s of
the particle being at position x at time t (see figure 4). χn is the solution of
the ordinary differential system







dχn(x, t; τ)

dτ
= ~vn(χn(x, t; τ))

χn(x, t; t) = x

Figura 4: Path or “characteristic”

• Mixed variational formulation in velocity/pressure due to the difficulty of find-
ing finite element spaces that comply with the condition on the divergence of
the velocity.

• Spatial discretization through P1-bubble finite elements for the components of
the velocity and P1 for the pressure. It is also called the “mini element” (see
[3]).
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• Elimination of bubbles by static condensation in the assembly. This is possible
because we can express the degrees of freedom of the velocity in barycenters
of tetrahedra (bubbles) as linear combinations of the degrees of freedom of the
velocity and the pressure in vertices. Therefore the linear system to solve does
not involve bubbles, with subsequent simplification in the solution.

• Dual method to solve the discretized problem (pressure as unknown). It results
from conversion of the initial linear system, having velocity and pressure as
unknowns, to an equivalent system where the unknown is only the pressure.

• Solution of the linear system through a conjugated gradient method, precon-
ditioned with the Cahouet’s matrix given by (see [10])

Ch =
(

1

∆t
R−1

h + µ̄I1
h

)−1

where µ̄ is an averaged value of the effective viscosity µe, and matrices Ih and
Rh are discrete approximations of the mass and stiffness terms, respectively.

• Uncoupling of the equations related to the three components of the velocity
allowing us to solve three systems with the same matrix.

4.3 Gas phase: heat transfer

Heat transfer in the boiler and toward the water walls is mainly accomplished by
convection and radiation.

In order to account for the effect of the convection it is necessary to know the
velocity field given by the equation of the gas motion, as well as the density and
the specific heat at constant pressure of the mixture which depends on the mass
fractions.

On the other hand calculation of radiant heat-flux requires to know the field of
the thermal radiation intensity in the fireplace. This leads us to incorporate into
the model a new integrodifferential equation, that must be integrated by numerical
methods too.

4.3.1 Equations of the model

1. Energy equation

We adopt the following form, valid for Lewis number being unity, the deduction
of which can be seen in Kuo [15]

∇ · (ρh~v) +∇ · qr −∇ · (ρD∇h) = fe − fra + fre, (4)
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where h is the enthalpy of the gaseous mixture per unit mass. This enthalpy
is the sum of the enthalpies per unit mass of species in the mixture, namely

h =
nsp
∑

i=1

(

h0i +
∫ T

T0

cpi(τ)dτ

)

Yi. (5)

In the previous expression cpi(T ) denotes the specific heat at constant pressure
for species i, at temperature T . In general, these functions appear in the
bibliography as fourth degree polynomial functions of the temperature, that
is,

cpi(T ) = a1i + a2iT + a3iT
2 + a3iT

3 + a4iT
4

2. Equation of the thermal radiation

The radiation transfer equation in a medium describes the radiation intensity
in any position, throughout its path across a medium that absorbs, emits and
scatters it. When scattering is important, it is an integrodifferential equation
that may be written as (see [30], [12], [25] or [14])

ω · ∇xI + asI + agI + σsI −
σs

4π

∫

S2

φ(ω∗, ω)I(ω∗)dS(ω∗) = asIbs + agIbg (6)

Once the field I was calculated, the radiant heat-flux vector qr is given by

qr =
∫

S2

IωdS(ω)

and its divergence, appearing in the energy equation, has the expression

∇ · qr =
∫

S2

{(ag + as)I − asIbs − agIbg} dS(ω)

3. Boundary conditions

Diffuse reflection (in walls):

I(x, ω) = I(x) =
1− εw

πεw
qr · n +

σT 4
w

π
∀ ω/ω · n < 0. (7)

Flux to water walls:

qr · n− ρD
∂h

∂n
= hw(Tw − Ta). (8)

Temperature of air/gases in inlets and grill:

T = Te. (9)
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Absorption and scattering coefficients, as and σs, are functions of the position
and depend on the density of the coal particles at the considered point.

We indicate a way of calculating them. We begin by the absorption coefficient
as. First, we recall that the source of radiation absorbed by particles denoted by
fra was given by (see [25], [30])

fra(x) =
Ne
∑

j=1

Nt
∑

i=1

Qj
pij

100

∫ tf
ij

0
4πδ2

sξ
(
∫

S2

IdS(ω)
)

δ(x− xij
s (t))dt.

This term must be equal to
∫

S2

as(ω, x)I(ω, x)dS(ω)

representing the radiant energy absorbed by particles at point x. Supposing that as

does not depend on ω we have:

as(x) =
fra(x)

∫

S2 I(ω, x)dS(ω)
,

that is,

as(x) =
Ne
∑

j=1

Nt
∑

i=1

Qj
pij

100

∫ tf
ij

0
πδ2

sξδ(x− x
ij
s (t))dt.

An analogous reasoning leads us to the following expression for the scattering
coefficient:

σs(x) =
Ne
∑

j=1

Nt
∑

i=1

qj
pij

100

∫ tf
ij

0
πδ2

sψδ(x− x
ij
s (t))dt.

4.3.2 Numerical methods

1. Six-flux method for the radiation

Solution of the radiation intensity equation is complex. In fact, the unknown
I is function, not only of the considerated point, but also of the direction of
propagation. Thus a numerical method must deal with two discretizations,
one for each variable.

For the discretization of the direction variable a flux method is used (see [11],
[28] or [29]) where a set of characteristic directions are chosen. We have used a
six flux method, which leads to a system of three partial differential equations
we detail below.

To solve this system we have developed two computer programs that imple-
ment different methods. The first of them, valid for any type of geometry, uses
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a discretization in the spatial variables by piecewise linear finite elements with
a tetrahedral mesh. The second one initially covers the case where the domain
of the model is a parallelopiped. Its advantage is the reduced calculation time
that it needs, because of the implementation of an algorithm developed by
us, reducing the tridimensional problem to a collection of monodimensional
problems.

Next we expose in a short way these techniques and methods. More details
can be found in [4] and [8].

First we consider the approximation of the radiation intensity in the following
six directions of the space:

ω+
1 = (1, 0, 0), ω−

1 = (−1, 0, 0), ω+
2 = (0, 1, 0), ω−

2 = (0,−1, 0), ω+
3 = (0, 0, 1),

ω−
3 = (0, 0,−1).

We denote by I+
i (resp. I−i ) the approximation of I(ω+

i ) (resp. of I(ω−
i )) that

we are going to introduce. We also introduce the functions:

Fi = I+
i + I−i , qi = I+

i − I
−
i (1 ≤ i ≤ 3).

Then we can prove (see [8]) that the equation of the radiation intensity is
reduced to

−
∂

∂xi

(

β
∂Fi

∂xi

)

+KFi − 2σss
3
∑

j=1
j 6=i

Fj =
2agσT

4

π
+

2asσT
4
s

π
, 1 ≤ i ≤ 3

being

β = [a+ σs(1− f + b)]−1

K = a+ σs(1− f − b) = a+ 4σss

a = as + ag

f =
1

2

∫ π
2

0
φ(θ) cos2 θ sin θ dθ

b =
1

2

∫ π

π
2

φ(θ) cos2 θ sin θ dθ

s =
1

8

∫ π

0
φ(θ) sin3 θ dθ

Let

qi = −β
∂Fi

∂xi

(1 ≤ i ≤ 3)
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and

qr =
π

2
(q1, q2, q3).

Then

∇ · qr = −
π

2

3
∑

i=1

∂

∂xi

(

β
∂Fi

∂xi

)

= 3agσT
4 + 3asσT

4
s − a

π

2

3
∑

i=1

Fi (10)

and by replacing in the energy equation we have:

∇ · (ρh~v) + 3agσT
4 + 3asσT

4
s − a

π

2

3
∑

i=1

Fi −∇ · (ρD∇h) = fe − fra + fre,

or, by eliminating in both sides the radiant energy absorbed and emitted by
coal particles,

∇ · (ρh~v) + 3agσT
4 − ag

π

2

3
∑

i=1

Fi −∇ · (ρD∇h) = fe.

The first term in the right-hand side can also be written as

∇ · (ρh~v) = h∇ · (ρ~v) + ρ~v · ∇h

and by using the conservation equation of mass (1) becomes

ρ~v · ∇h + hfm + 3agσT
4 − ag

π

2

3
∑

i=1

Fi −∇ · (ρD∇h) = fe. (11)

On the other hand, the boundary conditions (7)-(9) lead to

β
∂Fi

∂xi
ni + ǫwFi =

2σ

π
ǫwT

4
w (on the walls) (12)

ǫwπ

2
Fi − ρD

∂h

∂n
= hw(Tw − Ta) + ǫwσT

4
w (on the walls) (13)

T = Te (on inlets and grid) (14)

2. Spatial discretization and algorithms of resolution

Next we describe the methods used for discretization and later resolution of the
energy equation (11) and of the discrete radiation equation (10) with boundary
conditions (12)-(14).
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First the characteristics method is used for discretization of the convective
term. For the resolution of the energy equation (calculation of enthalpy and
then of temperature) a classical piecewise linear finite element of degree one
for a tetrahedral mesh of the domain is used.

On the other one the term 3agσT
4 appearing in the energy equation, is treated

in a explicit form, in order to avoid the non-linearity.

Finally, because of the coupling between the energy equation and the radiation
intensity equation, we propose the iterative algorithm given below.

(a) characteristic method for the convective term:

(ρ~v · ∇h)(x) = ρ(x)
hn+1(x)− hn(Xn(x))

∆t

(b) iterative algorithm:

i. Solution of the radiation problem

−
∂

∂xi

(

β
∂F n+1

i

∂xi

)

+KF n+1
i − 2σss

3
∑

j=1
j 6=i

F n
j =

2agσ(T n)4

π
+

2asσ(Ts)
4

π
, 1 ≤ i ≤ 3,

β
∂F n+1

i

∂xi
ni + ǫwF

n+1
i =

2σ

π
ǫw(T n

w)4

(collection of onedimensional problems)

ii. Calculation of enthalpy and temperature

ρ
hn+1(x)− hn(Xn(x))

∆t
+ fmh

n+1 + 3agσ(T n)4

−ag
π

2

3
∑

i=1

F n+1
i −∇ · (ρD∇hn) = fe.

ǫwπ

2
F n+1

i − ρD
∂hn+1

∂n
= hw(T n

w − Ta) + ǫwσ(T n
w)4 (in walls)

These equations are solved by using lagrangian piecewise linear finite
elements. For that we make the weak formulation:
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∫

Ω
ρ(
hn+1(x)− hn(Xn(x))

∆t
)zdx+

∫

Ω
fmh

n+1zdx+
∫

Ω
3agσ(T n)4zdx

−
∫

Ω
ag
π

2
(

3
∑

i=1

F n+1
i )zdx+

∫

Ω
ρD∇hn+1 · ∇zdx =

∫

Ω
fezdx+

∫

Γw

hw(Ta − T
n
w)zdΓ +

∫

Γw

ǫw(
π

2
Fi − σ(T n

w)4)zdΓ

When we solve this problen we obtain the enthalpy field, hn+1, and
then we calculate the termperature, T n+1, by solving the non-linear
equations (5) by Newton’s method.

4.4 Gas phase: species transportation

The combustion model we have adopted suppose that all chemical reactions take
place either on the solid-gas interphase or in the gas close to the particle. At the
same time we have supposed that the combustion reactions of the volatiles and of the
carbon monoxide produced in the oxidation of the char take place instantaneously
and, therefore, they are controlled by this oxidation and by oxygen diffusion.

As a consequence of this, in the gas-phase model we have only considered the fol-
lowing species: nitrogen, carbon dioxide, oxygen, sulphur dioxide and water vapour.

In order to determine the mass fractions of these species in the gas mixture we
must write the corresponding conservation laws, including in the right-hand side the
contributed mass (or consumed) by the combustion of coal particles.

4.4.1 Equations of the model

Species:

1 : CO2 2 : O2 3 : H2O 4 : SO2 5 : N2

Equations: (see for example Kuo [15])

∇ · (ρ~vYi)−∇ · (ρD∇Yi) = fi, i = 1, 2, 3, 4.

or, equivalently, by using the overall continuity equation (1)

ρ~v · ∇Yi + Yifm −∇ · (ρD∇Yi) = fi, i = 1, 2, 3, 4. (15)

Y5 = 1− Y1 − Y2 − Y3 − Y4
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Boundary conditions:

Yi = Yie, (inlets and grid),

∂Yi

∂n
= 0, (walls and outlets).

4.4.2 Numerical methods

The previous equations have been solved by using the following numerical techniques

1. characteristics method for the convective term:

(ρ~v · ∇Y )(x) = ρ(x)
Y n+1(x)− Y n(Xn(x))

∆t

2. iterative algorithm:

ρ
Y n+1(x)− Y n(Xn(x))

∆t
+ fmY

n+1 −∇ · (ρD∇Y n+1) = f

These equations are solved by using a piecewise linear finite element method
for a tetrahedral mesh to discretize the following weak formulation

∫

Ω
ρ(
Y n+1(x)− Y n(Xn(x))

∆t
)zdx+

∫

Ω
fmY

n+1zdx

+
∫

Ω
ρD∇Y n+1 · ∇zdx =

∫

Ω
fzdx

Note that the finite element matrix depends on the density but not on n. More-
over it is the one appearing in the energy equation. Thus we assembly, block
and factorize a single matrix to solve energy and mass fractions equations.
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5 Global algorithm

We have just indicated that the different submodels corresponding to the gas-phase
and to the solid-phase are coupled. Therefore, if we want to simulate the behaviour
of the boiler it is necessary to solve them together.

Next diagram summarizes the iterative algorithm that we have implemented to
solve this coupled problem. Furthermore we indicate the equations we solve in each
step.

INICIALIZATION
Mass fractions
Gas temperature
Wall Temperature
Velocity of the gas
Pressure of the gas

↓

CALCULATION
Density: (state equation: ρ = p̄

RT
)

Divergence of the velocity: (conservation of overall mass: ∇·v = −v·∇ρ+fm

ρ
)

Velocity and pressure: (cons. of the momentum)
Specific heat (cp) of the gas: (function of the temp. and of the mass frac-
tions)
Motion and combustion of particles
Gas and wall temperatures. Fluxes to wall: (cons. energy and radiation)
Mass fractions of the gaseous species: (cons. mass of the species)

↓

NO ← STOPPING TEST → YES

↓

WRITING OF RESULTS

The correspondent program, written in FORTRAN 77, has more than 15.000
lines. We have made a graphical interface with C and X11/Motif in order to make
it user-friendly.

27



6 Numerical results

The results presented below have been obtained with the previous model, for a boiler
of the ENDESA Power Plant at As Pontes. The figures 10, 11 and 12 show two
side views and a horizontal section of the boiler, where situation of burners can be
apreciated. The furnace has six mills, with four levels or “fingers” each one.

Data, both geometrical and operation, have been supplied by ENDESA that has
carried out the corresponding measures. Only four mills are operating in the simula-
tion carried out (those marked with letters A, C, D and F in the figure 12). Through
the other ones only air is introduced.

Graphical outputs in figures 6, 7, 8 and 9 show some results obtained with the
computer program for the model of combustion of particles. More precisely, we show
the evolution in time of density, energy source, combustion rate and temperature of
one particle moving into the fireplace.

Finally we include graphical outputs with results of the gas phase on two sections
-one vertical and an other horizontal, marked with point lines in the figures 10, 11
and 12- the velocity field and, over it, temperatures (figures 13 and 14), pressures
(figures 15 and 16) and CO2 mass fractions (figures 17 and 18).

The finite element mesh used for this simulation has 34.320 tetrahedra and 6762
vertices and it can be seen in the figure 5.

O 

X 
Y 

Z 

Figura 5: Mesh of the zone of the fireplace of the furnace
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Figura 6: Density (ρs) Figura 7: Source of energy (fe)

Figura 8: Combustion rate (λ) Figura 9: Temperature (Ts)
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Figura 10: Lateral side view of the boiler
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Figura 11: Frontal side view of the boiler
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Figura 12: Horizontal section of the boiler
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temperature [C]

384.87

449.92

514.97

580.02

645.07

710.12

775.17

840.22

905.27

970.32

1035.37

1100.42

1165.47

1230.52

1295.57

1360.62

1425.67

1490.72

1555.77

1620.82

Figura 13: Section x = 7.845 with velocity and temperature
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temperature [C]

258.16

317.66

377.17

436.67

496.18

555.68

615.19

674.70

734.20

793.71

853.21

912.72

972.23

1031.73

1091.24

1150.74

1210.25

1269.76

1329.26

1388.77

Figura 14: Section z = 27.8 with velocity and temperature
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pressure [mm H2O]

-9.44

-8.60

-7.75

-6.90

-6.05

-5.21

-4.36

-3.51

-2.66

-1.82

-0.97

-0.12

0.71

1.56

2.41

3.26

4.10

4.95

5.80

6.65

Figura 15: Section x = 7.845 with velocity and pressure
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pressure [mm H2O]

-15.85

-13.62

-11.39

-9.16

-6.93

-4.70

-2.46

-0.23

1.99

4.22

6.45

8.68

10.91

13.14

15.38

17.61

19.84

22.07

24.30

26.53

Figura 16: Section z = 27.8 with velocity and pressure
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Y_CO2

0.0196

0.0437

0.0677

0.0918

0.1158

0.1399

0.1639

0.1880

0.2120

0.2361

0.2601

0.2842

0.3082

0.3323

0.3563

0.3804

0.4044

0.4285

0.4525

0.4766

Figura 17: Section x = 7.845 with velocity and mass fractions of CO2
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Y_CO2

0.0119

0.0263

0.0407

0.0551

0.0695

0.0839

0.0983

0.1127

0.1271

0.1415

0.1559

0.1703

0.1847

0.1991

0.2135

0.2279

0.2423

0.2567

0.2711

0.2855

Figura 18: Section z = 27.8 with velocity and mass fractions of CO2
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7 Conclusions

We have introduced and numerically solved a mathematical model for the simulation
of the combustion process of pulverized coal in a boiler.

It is a tridimensional model that allows us to calculate the thermodynamic vari-
ables at each point of the domain. It consists of two parts corresponding to the
solid phase (coal particles) and the gas. It is structured in submodels correspond-
ing to the different physical-chemical fenomena involved in the process: motion and
combustion of coal particles, aerodynamics, heat transfer/thermal radiation, species
transportation. It also includes pre and postprocessing programs to use the libraries
MODULEF, GNUPLOT and VIGIE for finite element mesh generation and for vi-
sualization of the 2D and 3D results.

These programs have been used to simulate a furnace of the ENDESA Power
Plant (As Pontes). Although validation and adjust process are not concluded, the
comparison of the first results obtained with the measured values in the Plant can
be considered satisfactory. In any case, they can be used to state what are the
posibilities of the simulation program we have developed and its potential utility to
improve the performance of the combustion process, to explain certain phenomena
and to help in the design of new boilers. For example, by changing some of the data
and running the program in the computer, it would be possible to see the effect of
modifying the flow rate of the recirculating gases.

To conclude, the simulation tool we have developed can be very useful not only to
design new boilers, but also to know the behaviour of the existing ones when changes
in the type of coal, flow rate of gases/air, orientation of the jets in the burners, etc,
are carried out.
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8 Nomenclature list

• ag: absortion coefficient of the thermal radiation of the gas [m−1]

• as: absortion coefficient of the thermal radiation of the particles [m−1]

• Bi: frecuency factor for reaction i [m/s]

• c: adjust parameter (it is taken equal to 0.01)

39



• CD: particle aerodynamic drag coefficient

• cp: specific heat at constant pressure of the gas [J/(kgK)]

• cpi: specific heat at constant pressure of the species i [J/(kg K)]

• cs: specific heat of the particle [J/(kg K)]

• D: mass diffusion coefficient [m2/s]

• δs: radius of the particle [m]

• δ(x− .): Dirac meassure at x

• Ei: activation energy for reaction i [J/kmol]

• ǫw: adimensional emissivity coefficient of the water walls

• fA(x): source per unit volume and time of the magnitude A, at x

• F ij
A (t): quantity of the magnitude A per unit time, released at t by a particle

of type i introduced in the fireplace by the inlet j

• Fi: radiation fluxes

• φ: defraction function

• g: gravitational vector [9.8 m/s2]

• h: enthalpy per unit mass [J/kg]

• ĥ: characteristic parameter of the mesh size

• hi: enthalpy per unit mass of the species i [J/kg]

• h0i: reference enthalpy per unit mass of the species i [J/kg]

• hw: coefficient of heat transfer to the walls [W/(m2K)]

• I: total intensity of the thermal radiation [W/(m2 str)]

•

Ibs =
σT 4

s

π

•

Ibg =
σT 4

π
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• ψ: adimensional scattering coefficient of the coal particles

• k: thermal conductivity of the gas [W/(mK)]

• λi(t): (adimensional) reaction rate i at t

• ms(t): mass of the particle at t [kg]

• M : molecular weight of the mixture [kg/kmol]

• Mi: molecular weight of the species i [kg/kmol]

• Mvol: molecular weight of the volatile combustibles [kg/kmol]

• µe: effective dynamic viscosity (µe = µg + µt) [kg/(ms)]

• µg: shear dynamic viscosity of the gas [kg/(ms)]

• µt: turbulent viscosity [kg/(ms)]

• n = (n1, n2, n3): exterior unit normal vector to the surface of the boiler

• nsp: number of gaseous species in the gaseous mixture

• p: pressure [N/m2]

• p̄: mean pressure in the interior of the fireplace

• pij: percentage of coal of type i that goes in the fireplace by the inlet j

• qi: heat of the reaction i [J/kg]

• Qj: mass flow of coal through the inlet j [kg/s]

• qr: radiant heat-flux vector [W/m2]

• R: gas constant [J/(K kg)]

• R: universal gas constant [8.317× 103 J/(K kmol)]

• Re: Reynolds number

• ρ: density of the gas [kg/m3]

• ρA(t): density of the species A in the particle at t [kg/m3]

• ρg(t) = ρ (t, xs(t)): density of the gas close to the particle at t [kg/m3]

• ρs: density of the particle [kg/m3]
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• S2: unit sphere

• σ: Stefan-Boltzmann constant [5.6696× 10−8 W/(m2K4)]

• σs: scattering coefficient of the thermal radiation for the gas because of the
presence of coal particles [m−1]

• T : temperature of the gas in the fireplace [K]

• T0: reference temperature [K]

• Ta temperature of the water in the tubes [K]

• Te: temperature of the gases in the inlet [K]

• Tg(t) = T (t, xs(t)): temperature of the gas close to the particle at t [K]

• Ts(t): temperature of the particle at t [K]

• Ts0: initial temperature of the particle [K]

• Tw temperature of the water walls [K]

• tfij: time that takes the particle to be completely burnt or to leave the fireplace

• ~v: velocity of the gas [m/s]

• ve: velocity of the gases in the inlet [m/s]

• vg(t) = v (t, xs(t)): velocity of the gas close to the particle at t [m/s]

• vs(t): velocity of the particle at t [m/s]

• vs0: initial velocity of the particle [m/s]

• ω: unit vector showing directions of radiant transmission

• xs(t): position of the particle at t [m]

• xs0: initial position of the particle [m]

• xij
s (t): position where is the particle at t

• ξ: adimensional coefficient of the thermal radiation emissivity of the particle

• Yi: mass fraction of the species i [adimensional]

• Yie: mass fraction of the species i in the inlets [adimensional]

• Yig(t) = Yi (t, xs(t)): mass fraction of the species i close to the particle at t,
being CO2 the corresponding one to i = 1 and O2 to i = 2
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