Vol. 20-2 (2020)

NATIONAL WEALTH STRUCTURE OF THE COUNTRIES OF THE WORLD, 2000–2014,AND ECONOMIC DEVELOPMENT GUZEV, M.M.* LEDENEVA, M.V. POLKOVNIKOV, A.A.

Abstract. The article shows the methodological and theoretical bases for the measurement of national wealth, accordingly to the World Bank reports. On the basis of a widening conception and the data of the World Bank the tendencies of changes in the dynamics and structure of national wealth in 91 countries of the world in 2000-2014 are shown. The clusters of the countries of the world with the most similar tendencies are formed with the help of a number of cluster formation methods. Besides we compare indicators of wealth and economic development and find a high positive correlation although with a few exceptions.

JEL Codes:

Keywords: national wealth, assessment methodology, human capital, natural capital, produced capital, structure, algorithm, cluster formation, cluster.

1. Introduction

The importance of the problem under analysis is determined by the necessity of the clarification of the place and role of specific factors in the growth of national wealth, its volume and dynamics of this wealth in various countries of the world for the development of an efficient strategy of economic policy.

The analysis of the existing methods of various elements of national wealth calculation and the assessment of its volume in general allows speaking about the priority of the methodology of the World Bank which became the basis of research allows making the cluster formation of the existing data.

The chosen algorithm and the used metrics were focused on the comparison of the volume and the structure of national wealth of 91 countries of the world according to the data of the World Bank what allows creating the main clusters which reflect the level of human, produced and national capital with a high reliability. The results of research can vary from the widely used data due to a new methodology of cluster formation of the data used by the authors.

^{*}Guzev, M.M., Dr. in Ec. Sc., Prof., Chair of Economics and Management, Volzhskiy branch, Volgograd State University (VSE), Russia, e-mail: guzev@vgi.volsu.ru. ORCID:0000-0003-3129-5211

Marina V. Ledeneva, Dr. in Ec. Sc., Prof., Chair of Management and Commerce, Plekhanov Russian University of Economics, Volgograd branch, 11 Volgodonskaya Street, 400131, Volgograd, Russia, mledenjova@yandex.ru. ORCID 0000-0002-9638-0364

Polkovnikov A.A., Candidate of Physics and Mathematics, Head of the Chair of Mathematics, Informatics and Natural Sciences, Volzhskiy branch, Volgograd State University (VSE), Russia, e-mail: polkovnikov.alexander@gmail.com, polkovnikov@vgi.volsu.ru. ORCID: 0000-0002-0869-3687

2. Literature Review

The issue of national wealth, its structure, sources of its formation is traditional for the economic theory. Before the conception of the added value appeared, the national wealth was the main indicator characterizing the production opportunities of the economy. The fundamental parameters of the theory of national wealth were developed in the papers of F. Quesnay, J. B. Clark, A. Marshall, J.S. Mill, V. Pareto, W. Petty, A. Smith, J.-B. Say and some others. The research of T. Ashirova, E. Bukhvald, R. Goldsmith, S. Valentey, L. Nesterov, N. Fedorenko had a significant impact on the study of content, composition, reproduction and measurement (assessment) of the national wealth and its main elements.

When speaking about the problem of the measurement of the national wealth we cannot but agree with E.M. Bukhvald that the total national wealth and moreover its dynamics cannot be presented as a mathematical sum of methodologically differentiated economic value assessments. We shouldn't be seduced by a simplification that it is enough to obtain the value assessment of this or that amount of natural resources this way or another, to add it mathematically to an estimation of other elements of national wealth so that we could find that the goal of the assessment of the cumulative value of the national wealth is achieved. Such a summation of the results of the methodologically differentiated measurements is not quite representative and even in the form of a moment assessment and when we speak about a long term forecast this sum tends to a zero reliability¹.

Today there exist two main directions in the assessment methodology of national wealth:

- traditional approach is based on the conception of "ecological and economic assets" published in the guidelines of the United Nations for the System of National Accounts, guidelines in the UN "Integrated Environmental and Economic Accounting" and also the classification of the nature protection activity;

- expansive conception of the World Bank.

The statistics of the national wealth according to the methodology of the System of National Accounts is formed as the statistics of national resources and it uses the methods of direct countingwhich use the inventory check data, accounting and statistical reports. According to this methodology the national wealth includes a set of economic assets. An economic asset is the accumulated value of wealth which gives an economic benefit or a number of economic benefits to the owner of the economic asset as the result of its ownership or its use during some period of time². Thus, the components of the national wealth are the objects which have the followingdistinctive determining features: legal entity or a household (institutional unit) has the right for the mentioned facility, its use on the basis of the property right gives the institutional unit the opportunity of getting the economic benefit, and the object has a monetary evaluation. The mentioned criteria do not allow including into the System of National Accounts a number of goods whose monetary evaluation and also the calculation of the profit obtained from them are

¹ National wealth under the conditions of market conditions' creation. Editor in Chief V.K. Faltsman, E.M. Bukhvald. Moscow: NaukaPubl., 1994. P. 10.

²TheSystemofNationalAccounts 2008. IMF., Commission of European Communities. OECD, UN, WorldBank. New York, 2009. P. 142.

complicated. For example, these arethe intangible forms of wealth when their bearer is a human (human capital) or society (social capital, institutional capital, intangible cultural and spiritual values) and also the natural capital the assessment of which is carried out irregularly. As a result the calculation of the national wealth is limited as a rule by the produced non-financial assets and the financial assets minus the debt obligations.

The difficulty in the calculation of the elements of national wealth by a traditional method encouraged the search of alternative ways of assessment. So, in the late 1990s the group of specialists of the World Bank (Kunte A., Hamilton A., Dixon J., Clemens M.) developed as an experiment an alternative method of the analysis of the structure of national wealth which was based on the rent assessment (approach)³. It is based on the definition of the national wealth as the total of three components: natural capital, produced capital and human resources. In further researches which were published in 2006⁴ (K. Bolt, K. Hamilton, A. Markandia, S. Pedroso-Galinato, J. Root, M. Said Ordubady, P. Silva, L. Tadzhibaeva) the term "human resources" was replaced by the term "intangible capital". When speaking about the human capital (the sum of knowledge and skills of the population, know-how) and also the quality of official (institutional infrastructure of the country, legal system, clear registration of property rights) and inoffical institutes (social capital). The researchers confirmed that the wealthy countries are rich specifically due to the qualification of their population and the quality of the institutes which gave support to the economic activity⁵. However in the research published in 2018 the authors returned again to the term "human resource" having entitled it as "human capital".

The method of the World Bank was firstly focused on the inter country comparisons that's why its authors had to make a number of significant simplifications. The produced assets were assessed in a traditional way on the basis of the regular inventory check which was carried out on the basis of monetary evaluation of the initial stock of assets, their wear and tear and investments. For the assessment of natural resources and human capital the income approach was used. So, the value of the land was calculated judging from the current value of the flow of income obtained in a limitless horizon period. The income from forest resources and minerals was also evaluated judging from the resource rent. The period of minerals' depletion was determined on the basis of the information about the explored reserves and the dynamics of the natural gas extraction which provided the maximal constant income flow. In case when the level of reserves was unknown a conventional term of the resources' depletion of 20 years was taken into account. The incomes from the extraction of oil, gas, iron ore, lead, nickel, phosphorites, zinc and stanum were analyzed.

The intangible capital was evaluated by the authors according to the "residual cost". The net national income produced due to natural resources was deducted from the total volume of net national income. After that the current value of the "non-resource"

³Kunte A., Hamilton A., Dixon J., Clemens M. Estimating National Wealth: Methodology and Results. The World Bank, Environmentally Sustainable Development, 1998.

⁴Where Is the Wealth of Nations? Measuring Capital for the 21th Century.TheWorldBank.WashingtonDC, 2006.

⁵Where Is the Wealth of Nations? Measuring Capital for the 21th Century. TheWorldBank. WashingtonDC, 2006. P. XIV.

net national income per an average number of years of the productive life of population (life expectancy for the first year of life minus average age of population) was calculated. From the product obtained in the result which can be produced by the population the sum of assets and land were deducted. The result of these operations was taken as the assessment of human resources. The confusion of various methodologies of the elements of national wealth is one of the constraining drawbacks of the World Bank methodology although within the System of National Accounts it can remain. In addition, the intangible capital includes the direct foreign assets which the country obtains or pays off. For instance, if a country is a debtor, so the interest of foreign debts leads to the reduction of consumption reducing by this the total wealth and consequently the intangible capital. And, finally the intangible capital includes the errors and lacunas in the evaluation of natural and produced capital. The largest part of lacunas are observed in the fishery and ground waters.

The method of the World Bank was adjusted by the Russian Scientists of the Institute of Economics of the Russian Academy of Sciences (S. Valentey, L. Nesterov, G. Ashirova) taking into account its critical analysis and its adaptation to the situation in Russia. The scientists made significant corrections in the evaluation of a number of the countries for which an incomplete information was used (for instance, OPEC countries) and the evaluations of national wealth for a number of CIS countries were carried out. In order to make the elements of the national wealth comparable the authors of the calculations in Russia made the assumption that there would be similar conditions of the market economy and world price levels at the evaluation of the corresponding indicators⁶.

The research of the World Bank in 2018 in contrast to an earlier period showed that the human capital is evaluated as an evident element of the wealth accounts for every country. The World Bank developed a unique global data base of more than 1500 surveys of households which give the basis for a global introduction of a well-known approach of D. W.Jorgenson, and B. M. Fraumeni as a necessary earning for a living for the development of human capital⁷.

3. Methods of Research

The group of specialists from the World Bank made the experimental assessments of human, natural and produced capital accumulated in the world and calculated per capita in 92 countries of the world (Russia was excluded from the analysis) asof 1994 and then in 118 countries of the world where 5,3 billion people live as of 2000, in 149 countries of the world as of 2005 and then in 140 countries as of 2014.

The goal of the present research was the identification of the tendency of percentage change of natural, human and produced capital of the countries studied by the specialists of the World Bank for the period 2000–2014 (91 countries) and then to create the clusters from the countries with similar observed tendencies.

One of the main goals of machine teaching and in particular of data analysis it

⁶ValenteyS.D., NesterovL.I. Nakoplenie natsionalnogo bogatsva. Rossiya na fone mirovykh tendentsiy [Accumulation of national wealth. Russia at the back of world tendencies]. Moscow.: Institute of Economics of RAS Publ., 2000.

⁷Lange, G.M., Wodon, Q., Carey K. The changing wealth of nations 2018: Building a Sustainable Future. World Bank Group. WashingtonDC, 2018. P. 28.

is the goal of cluster formation i.e. the division of the data in groups in the way so the points which are very similar are included into one cluster and those which are seriously different are included into various groups⁸. The structure of the available data is presented by three parameters among which it is necessary to assess their possible dependence on each other. That's why as the basis of presentation of the data the barycentric coordinates were taken what allowed visualizing and forming clusters from the available data. The results of cluster formation depend not only on the chosen algorithm but also on the used metrics (distance measurement) between two points. Three variants of metrics are used in the research: Euclidian (standard) metrics, minimum out of the distances to the boundaries of a triangle and simulation of normal lines of the points.

In the given paper several methods of cluster formation are used:

1) K-means is the simiplest algorithm of cluster formation which was suggested in 1950s by the mathematicians Hugo Steinhauser and Stewart Lloyd (independently from one another). The mentioned algorithm divides an assemblage of elements of the space into a well-known number of clusters k. The principle of the work of the algorithm is as follows:

1. The projected centers of clusters (so called "centroids");

2. The distances from every point to every center are measured;

3. The points are divided into clusters (minimal distance from a point to the cluster center) (1):

$$V = \sum_{i=1}^{k} \sum_{x \in S_i} (x - \mu_i)^2$$
(1)

where k – number of clusters, Si – the obtained clusters, i = 1, 2, ..., k, a μi – mass centers of all the vectors x from the cluster Si.

4. Then for every obtained cluster the center of mass is reevaluated again and correspondingly, the cluster center is dislocated and the algorithm starts a new itinerary. The process is finished at the moment when the changes of the centers do not take place and new itineraries do not generate more changes.

The popularity of this algorithm is determined not only by its simplicity but also by a comparatively high speed of work⁹. The disadvantages of the method consist, first of all, in the fact that the number of clusters should be known in advance and the result depends on the initial choice of the cluster centers. There is no formal approach to the determination of the number of clusters and it is one of the variants of the use of the "elbow method". This method supposes the construction of the homogeneity function or heterogeneity of a cluster. The point in which the homogeneity function changes its behaviour can be seen as an optimal one. The measure of homogeneity can be the distance from a point to a cluster center. Second, the algorithm is incapable of identifying the cluster of an irregular sign and moreover the clusters of various forms what can lead to unexpected results. Third, the initial points of clusters are set by random what leads to the situation that a new beginning of the algorithm can give another result. The

⁸MuellerA., GuidoS. Vvedenie v mashinnoe obuchenie s pomoshchyu Python [Introduction into machine teaching with the help of Python]. Moscow: Publishing House Gevissta Publ., P. 85.

⁹Ibid., P. 198.

program uses the implementation of this method from sklearn library in the programming language Python.

2) The methods of hierarchy analysis or hierarchy cluster formation. The basis of the method is the construction of a hierarchy (tree) of the nested clusters. The basis of the method is the construction of the hierarchy (tree) of the nested clusters. There exist two variants of the implementation of the algorithm of the hierarchy analysis i.e. the agglomerative and divisional methods. In the thirst case the construction leads from particulars to generals i.e. initially every point presents the clusters and further the points are united forming new clusters and in division methods the clusters are constructed according to the principle "from generals to particulars" i.e. one large cluster consequently is divided into clusters of a smaller size. For the functioning of the algorithm the unknown number of clusters should be known.

Generally the agglomerative methods of a tree construction are used. In order to determine which points will be included into the cluster the following methods are used:

Singlelinkage(method of the nearest neighbour). The minimal distance between the points from various clusters.

Completelinkage(method of the furthest neighbour). The maximal distance between the points from various clusters.

The pair-group method using the arithmetic mean. A mean distance between the neighbouring clusters.

The centroidal method. The distance between clusters is the distance between their centroidals (mass centers).

The Ward method which shows the minimal growth of the dispersion inside of clusters.

In dependence on the chosen criteria of the relation there will be various results of cluster formation. The Ward criteria is convenient in most cases if it is not supposed that the clusters vary seriously according to the size¹⁰. It is worth mentioning that the agglomerative method copes much better with the data of various form and size than KMeans but it does not do it very good.

3)DBScanis the spatial cluster formation for the applications with noise (Density-basedspatialclusteringofapplicationswithnoise). As we can judge from the title the given algorithm is based on the density of the location of points. The most densely located points will create the clusters. In addition, DBScan has two important advantages: capability of the identification of clusters of irregular form and opportunity of identification the "noise of the point which are not included into any cluster" ¹¹. For the given algorithm two input values are necessary, they are the maximal remoteness of the "neighbour" in cluster (eps) and a minimal number of points which form a cluster (min samples).

The algorithm works in the following manner: a random point is selected and the reachable points in eps radius are marked. If the number of such points is lower than min_samples, the point is considered as a noise. If not it gets a mark of a new cluster and its "neighbours" undergo the same procedure. The peculiarity consists in the fact that in

¹⁰Mueller A., Guido S. Vvedenie v mashinnoe obuchenie s pomoshchyu Python [Introduction into machine teaching with the help of Python]. Moscow: Publishing House Gevissta Publ., P. 199.
¹¹Ibid., P. 204.

some cases the points remain contiguous and can be included into various clusters. All other points in every new beginning of the algorithm will remain in their places.

4. Results

The authors compared the amount and the structure of the national wealth of 91 countries of the world according to the data of the World Bank. If we compare the countries of the world according to the value of wealth per capita, thus in 2000 and in 2014 the first ten of the countries looked as follows (Table 1). As we can see in Table 1, the list of the countries changed by 50%. Norway improved its position, having moved 7 ranks upwards and having got the 1st rank in 2014. Australia and Canada which in 2000 were not included into the first ten, in 2015 had the 3rd and 4th ranks according to the amount of national wealth per capita. The positions of Denmark, Germany, France, Austria and Japan worsened. As for the Russian Federation it moved from the 42nd rank in 2000 to rank 30th in 2014.¹²

	Wealth per capita2000	Wealth percapita2014		
1	Switzerland	Norway		
2	Denmark	Switzerland		
3	Sweden	Australia		
4	USA	Canada		
5	Germany	USA		
6	Japan	Sweden		
7	Austria	Denmark		
8	Norway	Netherlands		
9	France	Singapore		
10	Belgium-Luxemburg	Germany		

Table 1. The top ten of countries according to National Wealth per capita

Source: World Bank.

If we analyze the absolute growth of national wealth per capita, so we can say that the maximal amount was observed in the countries with a low value of this indicator among which the countries of Africa predominate. Thus, in the Republic of Congo the amount of wealth per capita grew 19,5 times, in Nigeria it increased 13,6 times, in China it grew 11,3 times, in Ethiopia and Zambia this indicator increased 6 times, in Malaysia and Latvia it grew 5 times, in Russia it increased 4,8.

On the other hand, three countries (Greece, Argentina and Gambia) had a negative growth of national wealth. In average the amount of national wealth per capital in the set of the countries under analysis grew from 92407,1 US dollars per capita to 176932,2 US dollars or 1,9 times.

For the analysis of the structure of national wealth of the countries of the world the authors formed the clusters by means of three methods: K-means or methods of hierarchy analysis and DBScan with the use of three metrics: Euclidian (standard), minimum of distances to the boundaries of a triangle and multiplication product of points' normals.

¹²Calculated by the authors using the data: Where Is the Wealth of Nations? Measuring Capital for the 21th Century. 2006. TheWorldBank.WashingtonDC; Lange, G. M.; Wodon, Q.; Carey K. 2018. The changing wealth of nations 2018: Building a Sustainable Future. World Bank Group. WashingtonDC.

The most interesting is the cluster formation by means of the K-means method with the use of Euclidian metrics which is presented in Figures 1 and 2.

Human capital

Figure 1. Countries' cluster formation by means of the method K-means with the use of Euclidian metrics, 2000.Cluster 1 is violet, Cluster 2 is aquamarine, Cluster 3 is yellow, Cluster 5 is green.

Figure 2. Countries' cluster formation by means of the method K-means with the use of Euclidian metrics, 2014Cluster 1 is violet, Cluster 2 is aquamarine, Cluster 3 is yellow, Cluster 5 is green.

The result of this method's use became the formation of 5 clusters (Table 2) the main characteristics of which became the level of human capital to which various levels of produced and natural capitals can correspond. In general in all countries the share of human capital grew what is reflected in the shift of points in the lower axis to the right. In 2014 the countries with zero or negative human capital are absent.

The dynamics of cluster formation of shares of national wealth of the countries of the world allowed identifying 5 clusters (Table 3). In comparison with year 2000, in 2014 39 countries out of 91 countries of the world remained in the same clusters, 52 moved to another cluster. At the same time judging from the obtained data a more significant mixture of various countries is observed which are grouped into various subgroups according to economic and social development.

	Table 2. Cluster obtained by the I	x-means memous with the use of	
	2000	2014	Cluster characteristics
Cluster 1	<i>Nigeria</i> , Surinam	Guiana, Mauritania, Mali, Niger, Surinam	The natural capital predominates; the share of produced and human capital is low. The cluster includes the developing countries of Africa and South America which specialize in extraction and export of natural resources.
Cluster 2	Venezuela, Gabon, Guiana, Republic of Congo, Moldova, Russian Federation	Belize, Burkina-Faso, Gabon, Zambia, Cameroon, Congo, Ivory Coast, Madagascar, Malavi, Mozambique, Nepal, Chad	The share of human capital is relatively low, average share of natural and produced capital is medium. The cluster includes the developing countries, mainly the poor ones. The composition of the cluster significantly changed; in 2014 it included mainly the countries of Africa.
Cluster 3	Burundi, <i>Honduras, India,</i> <i>Cameroon, China, Mauritania,</i> <i>Madagascar, Mali, Nepal, Niger,</i> Rwanda, <i>Chad</i> , Ecuador, Ethiopia	Albania, Bolivia, Botswana, Burundi, Venezuela, Haiti, Gambia, Ghana, Egypt, Zimbabwe, India, Kenya, Comoro Islands, Morocco, Nigeria, Nicaragua, Peru, Russia, Rwanda, Senegal, Ecuador, Ethiopia	Low or average share of produced and natural capital, medium share of human capital. The cluster includes the developing countries.
Cluster 4	Albania, Bangladesh, Belize, Bolivia, Botswana, Burkina- Faso, Egypt, Zambia, Zimbabwe, Indo-nesia, Canada, Kenya, Columbia, Comoro I., Costa- Rica, Ivory Coast, Latvia, Malawi, Malaysia, Mexico, Moz- ambique, Nicaragua, Norway, Pakistan, Paraguay, Romania, Thailand, Chile, Estonia	Australia, Argentina, Bangladesh, Brazil, Gua- temala, Honduras, Greece, Georgia, Indonesia, Jordan, China, Latvia, Mexico, Moldova, Namibia, Pakistan, Paraguay, Romania, Thai- land, Philippines, Chile, Rep. of South Africa, Jamaica	The human capital predominates (55-85%); 10–20% are accounted for natural and produced capital.
Cluster 5	Australia, Austria, Argentina, Belgium-Luxembourg, Brazil, UK, Hungary, Haiti, Gambia, Ghana, Guatemala, Germany, Greece, Georgia, Denmark, Dominican R, Jordan, Ireland, Spain, Italy, Rep. of Korea, Morocco, Namibia, Nether- lands, Peru, Portugal, Salvador, Senegal, Singapore, USA, Uruguay, the Philippines, Finland, France, Switzerland, Sweden, Sri-Lanka, Rep. of South Africa, Jamaica, Japan	Austria, Belgium&Luxem- burg, UK, Hungary, Germany, Denmark, Domi-nican R, Ireland, Spain, Italy, <i>Canada,</i> <i>Columbia</i> , Rep. of Korea, <i>Costa-Rica, Malaysia</i> , Netherlands <i>Norway</i> , Portugal, El Salvador, Singapore, USA, Uruguay, Finland, France, Switzerland, Sweden, Sri-Lanka, <i>Estonia</i> , Japan	About 80% of national wealth is accounted for the human capital; 10–15% is accounted for the produced capital, the natural capital has a low importance. The cluster includes the highly developed countries and developing countries which are not rich in natural resources. This is the most stable cluster.

T 11 0 Cl + 1+ 11	4 10 4 1	· a . a	CE L'IL
Table 2. Cluster obtained by	y the K-means methods	with the use of	of Euclidian metrics

* - the countries which changed the cluster are put in italics

	Country	Characterof the shift		
Cluster	Indonesia, Malaysia, Norway, Moldova, Gabon,	The share of produced capital is		
1	Congo, Republic of Venezuela, Russian Federation,	practically unchanged, the		
	Guyana, Honduras, China, Cameron, Burundi,	distribution of shares is observed		
	Rwanda, Singapore, Nigeria	between the human and natural		
		capital.		
Cluster	Bangladesh, Romania, Costa-Rica, Albania,	The reduction of share of human		
2	Argentina, Greece, Georgia, Jamaica, Austria,	capital, growth of share of produced		
	Belgium-Luxemburg, UK, Hungary, Germany,	capital, small growth of share of		
	Denmark, Dominican Republic, Ireland, Spain,	natural capital.		
	Italy, Republic of Korea, Netherlands (Holland),			
	Portugal, USA, Uruguay, Finland, France,			
	Switzerland, Sweden, Sri-Lanka, Japan, Haiti			
Cluster	Burkina-Faso, Malawi, Botswana, Egypt,	Insignificant reduction of the share		
3	Zimbabwe, Mali	of produced capital, significant		
		growth of share of natural capital,		
		significant reduction of human		
		capital share. Transfer into the		
		cluster with a lower share of human		
		capital.		
Cluster	Pakistan, Paraguay, Thailand, Chile, Belize,	Growth of share of natural and		
4	Zambia, Ivory Coast, Mozambique, Bolivia, Kenya,	produced capital at a significant		
	Comoro Islands, Nicaragua, Madagascar, Nepal,	reduction of the share of human		
	Chad, Mauritania, Niger, Australia, Brazil,	capital.		
	Guatemala, Jordan, Namibia, the Philippines,			
	Republic of South Africa, Salvador, Gambia, Ghana,			
	Morocco, Peru, Senegal			
Cluster	Latvia, Mexico, Canada, Columbia, Estonia, India,	A significant growth of share of		
5	Ecuador, Ethiopia, Surinam	produced capital, some reduction of		
		natural capital share, reduction of		
		human capital share.		

Table 3. Cluster formation in dynamics of shares of national wealth of the countries of the world obtained by the K-means method with the use of Euclidian metrics

5. Wealth and economic development around the World in year 2015

Economic development measured by Gross Domestic Product per capita is usually an important indicator of wellbeing because high levels of this variable usually imply high levels of health assistance, education, labor productivity, women empowerment, quality of government and other positive features as seen in Guisan and Neira(2006), who highlight the positive impact of human capital, and in other studies.

Gross Domestic Product (GDP) depends on demand and supply, having into account, according to Guisan(2009), not only the supply of primary inputs but also the supply of intermediate inputs (given by domestic production of industrial and other intermediate goods and the capacity to export and import).

In Figure 1 of the study by Guisan(2009) appears the interrelationships between Human Capital, Social Capital, Physical Capital, Natural Resources, Industry, Non Industrial Production and Foreign Trade in order to contribute to sustainable increase of domestic income per capita.

Accordingly to these author, Human Capital and Physical capital per capita are very much related, and here we find also a close relationship between "Produced Wealth" and "Intangible Wealth" per capita.

In the Annex we include data of Wealth per capita and ranking positions, for the 91 countries of this study, of Wealth per capita (WH) and GDP per capita (PH). There, we present a table of correlation of PH with WH and with its componentsWH1 (Produced capital per capita), WH2 (Natural capital per capita) andWH3 (Intangible (human) capital per head). The correlation is high with WH, WH1 and WH3 but lower with WH2.

Here, in table 3 we present the coefficients of correlation between PH and any of the variables WH, WH1 and WH3, for groups of countries with different levels of Production per capita (PH).

	Groups of countries accordingly to value of PH in year 2015 (USD at 2011 PPPs)									
	<5000	5000-10000	10000-30000	30000-40000	>40000	All				
WH	0.8021	0.4901	0.7863	0.9784	0.3344	0.9070				
WH1	0.7627	0.4891	0.7272	0.7831	0.0824	0.9112				
WH3	0.7863	0.6694	0.7699	0.9643	0.2829	0.9009				

Ta	ıbl	le 3	6. C	Correl	lation	coeff	icients	of	PH	with	WH,	WH1	and	WH3
----	-----	------	------	--------	--------	-------	---------	----	----	------	-----	-----	-----	-----

Note: Elaboration from data in table A1 of the Annex.

There is a high positive correlation between PH and the variables WH, WH1 and WH3, in all the groups but the countries with PH higher than 40000. Produced capital and human capital are also important for economic development in high income countries, but in some case there are special circumstances related with the role of foreign trade, domiciliation of international companies, net international investment position (NIIP), or other ones, that may explain that PH may be higher or lower than expected accordingly to the level of WH. Figure 3 shows the positive relationship between PH and WH.

The estimated linear equation of PH as a function of WH is:

 \wedge

PH(i) =
$$6492 + 0.0464$$
 WH (i);
(6.85)* (20.32)* for i= 1,2,...,91

Where the terms within parentheses are t-student coefficients, which are high and show the significant effect of the coefficients.Goodness of fit: $R^2 = 0.8227$; % Standard Error on Mean=42%. Durbin-Watson statistic: 1.91

The results show that the value of WH has a positive and significant impact on PH, but there are other factors that can help to improve the goodness of fit, particularly regarding the % of the Standard Error on the Mean of PH.

6. Conclusions

1. On the basis of the data obtained by the specialists of the World Bank it was established that according to the amount of national wealth per capita from 2000 to 2014 the first ten of the countries of the world changed considerably although it were as earlier and they are industrially developed countries of the world. The total growth was 1,9 times.

The first ten according to the absolute growth of national wealth per capita for this period consisted of the countries from various continents with low initial indicators and Russia is included into this group. The growth of the indicator mentioned above in Russia made up 4,8. For comparison, this indicator in China made up 11,3 times. There are countries (Greece, Argentina, Gambia) with a negative growth (reduction) of national wealth.

2. The tendencies of the change of the share of national, human and produced capital in the national wealth of 91 countries of the world from 2000 to 2014 were identified. The analysis of the structure of national wealth was carried out with the help of the following methods: K-means, method of hierarchy analysis and DBScan with the use of three metrics (standard), minimum of distances to the boundaries of a triangle and result of multiplication of points' normals allowed identifying 5 clusters and calculating the growth of human capital share of the countries under analysis. TheKmeans method is the simplest and the most widely used algorithm of cluster formation but as the initial points of clusters are set at random, every its beginning can generate other, contradicting results. In particular, according to the obtained results, the Russian Federation still in 2000 being in the 2nd cluster with a low level of human capital was in the same cluster with such countries like Venezuela, Gabon, Moldova. And in 2014 when Russia was in the 3rd cluster with a "relatively low level of human capital" together with Albania, Botswana, Nicaragua, Peru, Zimbabwe, Morocco. At the same time Estonia, for instance which is famous for the emigration of qualified personnel was placed into the 5th cluster with a high share of human capital. That's why the data of research can be the information for reflection but not a final result.

3. The cluster formation according to the shift, obtained by means of the method K-means with the use of Euclidian metrics also allowed identifying 5 clusters. At the same time in comparison with 2000 in 2014 39 countries out of 91 remained in the same clusters and 52 countries moved into another one. In this case the obtained results can be characterized by a higher uncertainty. So, in the 2nd cluster which was characterized by the "reduction of the human capital share" the USA, Finland, Germany, Netherlands, Italy, Switzerland, Republic of Korea, Japan and also Bangladesh, Romania, Albania, Sri-Lanka, Jamaica were included. But the Russian Federation which had a relatively unchanged structure of national wealth remained in the 1st cluster next to Norway,

China, Malaysia, Singapore and even Indonesia, Congo, Venezuela, Honduras, Burundi and Nigeria. All this allows studying from different points of view the main tendencies in the development of the structure of national wealth of the countries of the world and what is the most important, its significance for the development of the country.

4. The clusters created from the countries with similar observed tendencies and the structure of national wealth and for which the main characteristics became the amount of human capital allow emphasizing both the rank of various countries in the "cluster hierarchy" and their dynamics which become the starting point for a further thorough research of tendencies of share change of natural, human and produced capital and also for the identification of the factors of these changes what can become a certain basis for taking positive decision in the social and economic development of the country.

References

Clark John Bates. 2000. The Distribution of Wealth: A Theory of Wages, Interest and Profits. Translated from [Clark John Bates. The Distribution of Wealth: A Theory of Wages, Interest and Profits, 1899]. Moscow: Helios ARB Publ., 367 p.

Fedorenko, N.P. 2003. Rossiya narubezhevekov [Russia at the turn of the century]. M.: ZAO «Izdatelstvro «Ekonomika» Publ., 727 p.

Fiziokraty. Izbrannyeekonomicheskieproizvedeniya [Physiocrats. Selected economic works]. 2008. F. Kesnay, A.P., Turgot A. R. J., Dupont de Nemur P.S. Translated from the French by A.V. Gorbunov and others, Translated from the English and German by P.N. Klyukin. Moscow: Eksmo Publ., 1198 p.

Goldsmith Raymond W. 1962. The national wealth of the United States in the post-war period. [Russ. ed.: Goldsmith R.,W. 1968. The national wealth of the United States in the post-war period. M.: Statistica Publ., 429 p.]

Goldsmith, R.A. 1951. A perpetual inventory of national wealth. Studies in income and wealth. N.Y. National Bureau of economic research. Vol. 14.

Guisan, M.C. (2009)."Government Effectiveness, Education, Economic Development and Well-Being: Analysis of European Countries in Comparison with the United States and Canada, 2000-2007".*Applied Econometrics and International Development*, Vol. 9-1, pp-39-48. <u>Abstract</u>

Guisan, M.C. (2017). "Manufacturing And Economic Development In The World For 2000-2015: Main Features And Challenges," *Revista Galega de Economía*, Vol. 26(3), pages 73-88.<u>Abstract</u>

Guisan, M.C., Neira, I. (2006). "Direct and Indirect Effects of Human Capital on World Development, 1960-2004", *Applied Econometrics and International Development* Vol 6-2, pp. 17-34. <u>Abstract</u>

Jorgenson, D. W., and B. M. Fraumeni. 1989. "The Accumulation of Human and Non-Human Capital, 1948–1984."In The Measurement of Saving, Investment and Wealth , edited by R. Lipsey and H. Tice. Chicago: University of Chicago Press, National Bureau of Economic Research.

Kunte A., Hamilton A., Dixon J., Clemens M. 1998. Estimating National Wealth: Methodology and Results. The World Bank, Environmentally Sustainable

Development.

Lange, G. M.; Wodon, Q.; Carey K. 2018. The changing wealth of nations 2018: Building a Sustainable Future. World Bank Group. Washington DC, 235 pp.

Marshall Alfred. Principles of Economics, 1890 – 1891 [Russ. ed.: Marshall Alfred. 1995. Printsipyekonomicheskoinauki. Ekonomicheskayateoriya. Khrestomatiya. Compiled by E.V. Borisov. Moscow: VysshayaShkola Publ., 232 p.]

Mill John Stuart. 1896. PrinciplesofPoliticalEconomy. Kiev: South Russian Book Editorial Board by F.A. Johanson, 1896. 750 p.

Mueller A., Guido S. 2017. Vvedenie v mashinnoeobuchenie s pomoshch'yu Python [Introduction to machine learning using Python]. Moscow: Publishing House Gevissta Publ., 393 p.

Natsional'noebogatstvo v usloviyakhformirovaniyarynochnykhotnoshenii [National wealth in the conditions of formation of market relations]. 1994. EditedbyV.K. Faltsman, E.M. Bukhvald. Moscow: Nauk, 192 p.

Nesterov, L.I., Ashirova T.G. 2003. Natsional'noebogatstvoichelovecheskii capital [National wealth and human capital]. *Voprosyekonomiki [Economic issues]*. № 2. P. 103–111.

Pareto, V. 2006. Manuale di Economia Politica, 1906. E. Critica, A. Montesano, A. Zanni and L. Bruni (Eds.). Milan: EGEA-Università Bocconi Editore. 706 pp.

Petty, W. 1988. Essays on mankind and political arithmetic. Cassel&Company. 192 pp.

Say, Jean-Baptiste. 1820. Traité d'économiepolitiqueou simple exposition de la manièredont se forment, se distribuent et se composent les richesses. [Russ. ed.: Say J.-B. 2000. Ekonomicheskiesofizmy; Ekonomicheskiegarmonii [Economic sophistry; Economic harmony].

Sistema natsional'nykhschetov [System of national accounts]. 2008 (2009). IMF., Commission of European Communities, UN, World Bank, New York, 1687 p.

Smith, A. 1965. The Wealth of Nations. New York: Random House Publ.

WB(2011). The Changing Wealth of Nations: Measuring Sustainable Development in the New Millennium. The World Bank. Washington DC, 223 pp.

Valentey S.D., NesterovL.I., 2000. Nakoplenienatsional'nogobogatstva. Rossiya nafoneobshchemirovykhtendentsii [The accumulation of national wealth. Russia at the background of global trends]. M.: Institute of Economics of RAS Publ., 489 p.

WB(2006). Where Is the Wealth of Nations? Measuring Capital for the 21th Century. The World Bank. Washington DC, 188 p.

WB(2018). The changing wealth of nations 2018, World Bank.

Annex on line at the journal Website: https://www.usc.gal/economet/eaat.htm

Annex

Table A1. Wealthper capita (WH)and Population in 2014 and GDP per capita (PH) in 2015

	Country	WH	WH1	WH2	WH3	PH	Рор	rwh	rph
1	Albania	53107	18808	13375	22818	11025	2894	52	45
2	Argentina	126516	37869	16185	71429	19101	42980	36	31
3	Australia	1046785	311442	180792	585737	43832	23461	3	10
4	Austria	694616	256744	16266	421849	44075	8542	12	9
5	Bangladesh	12714	3434	2234	7170	3133	159078	83	73
6	Belgium+Lux	676299	218835	5198	427492	41723	11788	13	13
7	Belize	58872	12303	29835	23969	6224	352	51	61
8	Bolivia	49235	6626	17527	24805	6532	10562	54	60
9	Botswana	95797	19908	26140	47087	15356	2220	42	33
10	Brazil	188883	32067	36978	123696	14666	206078	29	37
11	Burkina Faso	12323	1754	5755	4970	1551	17589	84	85
12	Burundi	7579	486	2704	4496	749	10817	90	91
13	Cameroon	31398	3768	13557	14414	2991	22773	67	74
14	Canada	1016593	229999	52438	730832	42983	35545	4	12
15	Chad	20077	1619	9973	9099	2048	13587	74	79
16	Chile	237713	45096	55113	139512	22537	17763	25	28
17	China	106172	28566	15133	63369	13570	1364270	39	38
18	Colombia	129289	27857	15932	87674	12985	47791	35	41
19	Comoros	8836	2585	2898	3402	2537	770	88	76
20	Congo, R	68779	15401	32843	25906	5543	4505	49	64
21	Costa Rica	166985	24681	24160	122640	14914	4758	31	35
22	Cote d'ivoire	24485	4391	11016	8986	3251	22157	71	72
23	Denmark	854331	273019	16261	538947	45484	5643	7	8
2	Dominican R	97257	21808	6219	73055	13372	10406	41	39
25	Ecuador	102451	20469	30007	52696	10777	15903	40	47
26	Egypt	38470	5605	11229	22591	10096	89580	63	49
27	El Salvador	44131	10216	4554	31951	7845	6108	59	55
28	Estonia	258903	91646	20093	155041	27329	1315	22	21
29	Ethiopia	13125	1347	5284	6723	1533	96959	81	86
30	Finland	726422	248986	18037	460082	38994	5462	11	14
31	France	641707	223830	11109	415851	37766	66269	15	17
32	Gabon	199901	34697	95461	62233	13297	1688	28	40
33	Gambia	5208	1545	1413	2745	1765	1928	91	82
34	Georgia	44327	20415	7344	21251	9025	3727	58	51
35	Germany	729064	236891	7701	467668	43784	80963	10	11
36	Ghana	25044	3768	8418	13853	3930	26787	70	69
37	Greece	227925	134895	12546	105663	24095	10892	27	26
38	Guatemala	43140	9555	8997	25450	7293	16015	60	57
39	Guyana	69971	12353	39620	21801	7377	764	48	56
40	Haiti	15040	5989	3018	6135	1651	10572	79	84
41	Honduras	44778	8427	10599	27372	4311	7962	57	68
42	Hungary	165519	65561	6623	102557	24831	9866	32	24
43	India	18211	5161	4739	8755	5754	1295292	77	62
44	Indonesia	46919	15299	9443	23701	10368	254455	55	48
45	Ireland	627256	189309	15912	473656	60944	4617	16	3
46	Italy	427466	188055	8619	241350	34245	60789	18	18
47	Jamaica	71766	30313	6804	41884	8105	2783	47	54
48	Japan	571927	179227	3741	365157	37818	127132	17	16

Applied Econometrics and International Development

Vol. 20-2 (2020)

49	Jordan	49287	17577	8876	27312	8491	7416	53	53
50	Kenya	19412	3356	6771	9556	2836	44864	75	75
51	Korea, R	424052	126650	4013	291748	34178	50424	19	19
52	Latvia	236906	113746	18738	113472	23057	1994	26	27
53	Madagascar	9237	919	4964	3784	1376	23572	87	87
54	Malawi	10442	939	5642	4003	1089	16695	86	89
55	Malaysia	239203	29989	28657	180729	24989	29902	24	23
56	Mali	17165	1999	11041	4334	1919	17086	78	80
57	Mauritania	29380	4891	17574	9368	3602	3970	69	71
58	Mexico	110471	39918	14629	59334	16668	125386	37	32
59	Moldova	35380	14213	4898	17852	4747	3556	66	66
60	Morocco	40488	13616	12372	16490	7286	33921	62	58
61	Mozambique	7718	1212	4136	3486	1118	27216	89	88
62	Namibia	84398	12696	18501	52458	9913	2403	44	50
63	Nepal	14368	2334	5545	6402	2301	28175	80	77
64	Netherlands	792396	234415	9528	516543	46354	16865	8	6
65	Nicaragua	37084	9075	13505	16698	4961	6014	65	65
66	Niger	11623	2369	8490	1041	897	19114	85	90
67	Nigeria	37408	3851	12963	20934	5671	177476	64	63
68	Norway	1671756	423905	103184	1004649	63670	5137	1	2
69	Pakistan	22182	3029	5982	13587	4695	185044	72	67
70	Paraguay	85575	11868	21358	54026	8639	6553	43	52
71	Peru	81931	19522	24914	39502	11768	30973	45	43
72	Philippines	30823	7860	5644	17790	6875	99139	68	59
73	Portugal	274453	117409	9189	172183	26548	10401	21	22
74	Romania	107022	41163	17265	54014	20538	19909	38	29
75	Russian Fed.	188715	48807	46921	90812	24124	143820	30	25
76	Rwanda	21619	1538	6650	13649	1716	11342	73	83
77	Senegal	13085	3736	3784	6260	2297	14673	82	78
78	Singapore	775196	186017	56	466119	80892	5470	9	1
79	South Africa	77348	19263	13743	44921	12425	54147	46	42
80	Spain	342470	142821	10298	215593	32216	46481	20	20
81	Sri Lanka	44970	11352	3247	32410	11062	20771	56	44
82	Suriname	161690	46402	86572	30782	14875	538	34	36
83	Sweden	886129	285792	27890	576521	45488	9696	6	7
84	Switzerland	1466757	356075	8531	1022950	56511	8189	2	4
85	Thailand	62599	20380	10144	33573	15237	67726	50	34
86	UK	647694	193456	7592	457223	38509	64613	14	15
87	UnitedStates	983280	216186	23624	766470	52790	318907	5	5
88	Uruguay	254601	64249	22001	171310	19831	3420	23	30
89	Venezuela	162560	70151	38151	49332	10973	30694	33	46
90	Zambia	40965	7139	16305	17549	3627	15721	61	70
91	Zimbabwe	18958	2704	7387	9877	1891	15246	76	81

Notes: WH is Wealth per capita in Dollars in year 2014; WH1 is "Produced Capital per capita", WH2 is "Natural Capital per capita", WH3 is "Intangible (human) Capital per capita, Pop is Population (thousand people). Source: World Bank. PH is Gross Domestic Product per capita a in year 2015 (in Dollars at 2011 Parities) f Guisan(2017) and World Bank.RWH and RPH: rankings of WH and PH. Data for Venezuela correspond to year 2010.

Some outstanding discrepancies between RWH and RPH are those of Canada, Ireland and Singapore, explained by special circumstances related with foreign trade, domiciliation of international companies or other factors. Table A2 presents correlation coefficients for PH, WH, WH1, WH2 and WH3.

	PH	WH	WH1	WH2	WH3
PH	1.0000	0.9070	0.9112	0.2626	0.9009
WH	0.9070	1.0000	0.9723	0.3922	0.9924
WH1	0.9112	0.9723	1.0000	0.3446	0.9541
WH2	0.2626	0.3922	0.3446	1.0000	0.3234
WH3	0.9009	0.9924	0.9541	0.3234	1.0000

Table A2. Correlations coefficients in 91 countries

Source: Elaborated from table A1.

The highest correlations of PH are with WH1, the produced capital, and WH3, intangible (human) capital, while the correlation of PH with WH2 is much lower. Overall there is a 90.7% of correlation between Wealth per capita (WH) and Gross Domestic Product per capita (PH). There is also a high correlation coefficient of WH1 with WH3, of 95.41%, due the to positive impact of Human Capital per capita on Physical Capital per capita, as seen in Guisan and Neira(2016) and other studies.

Journal published by the EAAEDS: https://www.usc.gal/economt/eaat.htm