Generalized down-up algebras and their automorphisms

Samuel A. Lopes Universidade do Porto, Portugal

A generalization of down-up algebras was introduced by Cassidy and Shelton in [4], the so-called generalized down-up algebras. We describe the automorphism group of conformal Noetherian generalized down-up algebras $L(f, r, s, \gamma)$ such that r is not a root of unity, listing explicitly the elements of the group. Then we apply these results to Noetherian down-up algebras, thus obtaining a characterization of the automorphism group of Noetherian down-up algebras $A(\alpha, \beta, \gamma)$ for which the roots of the polynomial $X^2 - \alpha X - \beta$ are not both roots of unity.

Introduction

Generalized down-up algebras were introduced by Cassidy and Shelton in [4] as a generalization of the down-up algebras $A(\alpha, \beta, \gamma)$ of Benkart and Roby [2]. Generalized down-up algebras include all down-up algebras, the algebras similar to the enveloping algebra of \mathfrak{sl}_2 defined by Smith [10], Le Bruyn's conformal \mathfrak{sl}_2 enveloping algebras [8] and Rueda's algebras similar to the enveloping algebra of \mathfrak{sl}_2 [9].

Two of the most remarkable examples of down-up algebras are $U(\mathfrak{sl}_2)$ and $U(\mathfrak{h})$, the enveloping algebras of the 3-dimensional complex simple Lie algebra \mathfrak{sl}_2 and of the 3-dimensional nilpotent, non-abelian Heisenberg Lie algebra \mathfrak{h} , respectively. These algebras have a very rich structure and representation theory which has been extensively studied, having an unquestionable impact on the theory of semisimple and nilpotent Lie algebras. Nevertheless, a precise description of their symmetries, as given by the understanding of their automorphism group, is yet to be obtained (see [5, 6] and [7, 1]). The problem of describing the automorphism group seems to be considerably simpler when a deformation is introduced.

It is reasonable to think of a Noetherian generalized down-up algebra as a deformation of an enveloping algebra of a 3-dimensional Lie algebra. Working over an algebraically closed field of characteristic 0, we use elementary methods to compute the automorphism groups of Noetherian generalized down-up algebras, under certain assumptions. Specializing, our results to down-up algebras, we obtain a complete description of the automorphism groups of all Noetherian down-up algebras $A(\alpha, \beta, \gamma)$, under the restriction that at least one of the roots of the polynomial $X^2 - \alpha X - \beta$ is not a root of unity.

1 The main results

 \mathbb{K} denotes an algebraically closed field of characteristic 0 and \mathbb{K}^* is the multiplicative group of units of \mathbb{K} .

Definition 1. Let $f \in \mathbb{K}[X]$ be a polynomial and fix scalars $r, s, \gamma \in \mathbb{K}$. The generalized down-up algebra $L = L(f, r, s, \gamma)$ is the unital associative \mathbb{K} -algebra generated by d, u and h, subject to the relations:

 $dh - rhd + \gamma d = 0$, $hu - ruh + \gamma u = 0$, du - sud + f(h) = 0.

L is said to be conformal if there exists a polynomial $g \in \mathbb{K}[X]$ such that $f(X) = sg(X) - g(rX - \gamma)$.

We denote the group of algebra automorphisms of L by Aut. Consider the following subgroup of Aut: $\mathcal{H} = \{\phi \in \text{Aut} \mid \phi(h) = \lambda h, \text{ for some } \lambda \in \mathbb{K}^*\}.$

Theorem 1. Let $L = L(f, r, s, \gamma)$ be a generalized down-up algebra. Assume $r, s \in \mathbb{K}^*$, r is not a root of unity and $f(X) = sg(X) - g(rX - \gamma)$ for some $g \in \mathbb{K}[X]$. Then the group Aut of algebra automorphisms of L is isomorphic to:

- 1. $(\mathbb{K}^*)^3 \rtimes \mathbb{Z}/3\mathbb{Z}$ if f = 0 and $s = r^{-1}$, where the generator $1 + 3\mathbb{Z}$ of $\mathbb{Z}/3\mathbb{Z}$ acts on the torus $(\mathbb{K}^*)^3$ via the automorphism $(\lambda_1, \lambda_2, \lambda_3) \mapsto (\lambda_3, \lambda_1, \lambda_2);$
- 2. $\mathbb{K} \rtimes (\mathbb{K}^*)^3$ if f = 0 and $s^{\tau} = r$, where $(\lambda_1, \lambda_2, \lambda_3) \in (\mathbb{K}^*)^3$ acts on the additive group \mathbb{K} via the automorphism $t \mapsto \lambda_1^{-1} (\lambda_2 \lambda_3)^{\tau} t$;
- 3. $\mathbb{K} \rtimes (\mathbb{K}^*)^2$ if $\deg(f) = 0$ and $s^{\tau} = r$, where $(\lambda_1, \lambda_2) \in (\mathbb{K}^*)^2$ acts on the additive group \mathbb{K} via the automorphism $t \mapsto \lambda_1^{-1} t$;

- 4. $(\mathbb{K}^*)^2 \rtimes \mathbb{Z}/2\mathbb{Z}$ if deg(f) = 1, $s = r^{-1}$ and $f(\frac{\gamma}{r-1}) = 0$, where the generator $1+2\mathbb{Z}$ of $\mathbb{Z}/2\mathbb{Z}$ acts on the torus $(\mathbb{K}^*)^2$ via the automorphism $(\lambda_1, \lambda_2) \mapsto (\lambda_1, \lambda_2^{-1}\lambda_1);$
- 5. $\mathbb{K}^* \rtimes \mathbb{Z}/2\mathbb{Z}$ if deg(f) = 1, $s = r^{-1}$ and $f(\frac{\gamma}{r-1}) \neq 0$, where the generator $1 + 2\mathbb{Z}$ of $\mathbb{Z}/2\mathbb{Z}$ acts on the torus \mathbb{K}^* via the automorphism $\lambda \mapsto \lambda^{-1}$;
- 6. \mathcal{H} otherwise, where \mathcal{H} can be explicitly described.

Other classes of algebras to which our study applies are Le Bruyn's conformal \mathfrak{sl}_2 enveloping algebras [8], occuring as $L(bx^2+x, r, s, \gamma)$, for $b \in \mathbb{K}$ and $rs \neq 0$, and some of Witten's seven parameter deformations of the enveloping algebra of \mathfrak{sl}_2 [11] (see also [3, Thm. 2.6] and [4, Ex. 1.4]).

For the convenience of those readers who are mostly interested in downup algebras, we replace our usual generators x and y of L with the canonical generators d and u of A, respectively.

Theorem 2. Let $A = A(\alpha, \beta, \gamma)$ be a down-up algebra, with $\alpha = r + s$ and $\beta = -rs$. Assume that $\beta \neq 0$ and that one of r or s is not a root of unity. The group Aut(A) of algebra automorphisms of A is described bellow.

- 1. If $\gamma = 0$ and $\beta = -1$ then $\operatorname{aut}(A) \simeq (\mathbb{K}^*)^2 \rtimes \mathbb{Z}/2\mathbb{Z}$;
- 2. If $\gamma = 0$ and $\beta \neq -1$ then $\operatorname{Aut}(A) \simeq (\mathbb{K}^*)^2$;
- 3. If $\gamma \neq 0$ and $\beta = -1$ then $\operatorname{aut}(A) \simeq \mathbb{K}^* \rtimes \mathbb{Z}/2\mathbb{Z}$;
- 4. If $\gamma \neq 0$ and $\beta \neq -1$ then $Aut(A) \simeq \mathbb{K}^*$.

In all cases, the 2-torus $(\mathbb{K}^*)^2$ acts diagonally on the generators d and u, $\mu \in \mathbb{K}^*$ acts as multiplication by μ on d and as multiplication by μ^{-1} on u, and the generator of the finite group $\mathbb{Z}/2\mathbb{Z}$ interchanges d and u.

References

- [1] J. Alev, Un automorphisme non modéré de $U(\mathfrak{g}_3)$, Comm. Algebra 14 (1986), no. 8, 1365–1378.
- [2] G. Benkart and T. Roby, Down-up algebras, J. Algebra 209 (1998), no. 1, 305–344.
- [3] G. Benkart, Down-up algebras and Witten's deformations of the universal enveloping algebra of \$\$\mathbf{s}\$l_2\$, Contemp. Math. 224 (1999), 29–45.

- [4] T. Cassidy and B. Shelton, Basic properties of generalized down-up algebras, J. Algebra 279 (2004), no. 1, 402–421.
- [5] J. Dixmier, Sur les algèbres de Weyl, Bull. Soc. Math. France 96 (1968), 209–242.
- [6] J. Dixmier, Quotients simples de l'algèbre enveloppante de \$l₂, J. Algebra 24 (1973), 551–564.
- [7] A. Joseph, A wild automorphism of Usl(2), Math. Proc. Cambridge Philos. Soc. 80 (1976), no. 1, 61–65.
- [8] L. Le Bruyn, Conformal sl₂ enveloping algebras, Commun. Algebra 23 (1995), no. 4, 1325–1362.
- [9] S. Rueda, Some algebras similar to the enveloping algebra of sl(2), Commun. Algebra 30 (2002), no. 3, 1127–1152.
- S.P. Smith, A class of algebras similar to the enveloping algebra of sl(2), Trans. Am. Math. Soc. **322** (1990), no. 1, 285–314.
- [11] E. Witten, Gauge theories, vertex models, and quantum groups, Nuclear Phys. B 330 (1990), 285–346.