Homotopy theory in terms of cylinder objects

Beatriz Rodríguez González Universidad de Sevilla, Spain

Denote the 'interval category' $\to \to \to \to \to$ by *I*. Consider a category \mathcal{D} and a class *E* of distinguished morphisms in \mathcal{D} . In this talk we will study the associated homotopy category $Ho\mathcal{D} = \mathcal{D}[E^{-1}]$, using a suitable cylinder functor $cyl : I^{op}\mathcal{D} \to I\mathcal{D}$ as basic tool. We focus our study in the following two points: first, provide an 'acceptable' description of $Ho\mathcal{D}$ and second, induce a (neither additive nor stable) triangulated structure on $Ho\mathcal{D}$. Examples of such cylinder functors are those induced by a suitable 'geometric realization' $\mathbf{s} : \Delta^{op}\mathcal{D} \to \mathcal{D}$, that is, in case \mathcal{D} is a 'simplicial descent category'. Hence this techniques can be applied, in particular, to: Δ^{op} Sets, topological spaces, (filtered) complexes, commutative differential graded algebras, DG-modules and mixed Hodge complexes.